
Eur. Phys. J. B 44, 345–358 (2005)
DOI: 10.1140/epjb/e2005-00133-4 THE EUROPEAN

PHYSICAL JOURNAL B

Surface critical behavior of fluids: Lennard-Jones fluid near
a weakly attractive substrate

I. Brovchenkoa, A. Geigerb, and A. Oleinikovac

Physical Chemistry, Dortmund University, 44221 Dortmund, Germany

Received 26 October 2004
Published online 28 April 2005 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2005

Abstract. The phase behavior of fluids near weakly attractive substrates is studied by computer simula-
tions of the coexistence curve of a Lennard-Jones (LJ) fluid confined in a slitlike pore. The temperature
dependence of the density profiles of the LJ fluid was used to study the surface critical behavior. A univer-
sal critical behavior of the local order parameter, defined as the difference between the local densities of
the coexisting liquid and vapor phases at some distance z from the pore walls, ∆ρ(z) = (ρl(z) − ρv(z))/2,
is observed in a wide temperature range and found to be consistent with the surface critical behavior of
the Ising model. Near the surface the dependence of the order parameter on the reduced temperature
τ = (Tc − T)/Tc obeys a scaling law ∼τβ1 with a critical exponent β1 of about 0.8, corresponding to
the ordinary surface transition. A crossover from bulk-like to surface-like critical behavior occurs, when
the distance to the surface is about twice the correlation length at the given temperature. Relations be-
tween the ordinary and normal transitions in Ising systems and the surface critical behavior of fluids are
discussed.

PACS. 05.70.Jk Critical point phenomena – 64.60.Fr Equilibrium properties near critical points, critical
exponents – 64.70.Fx Liquid-vapor transitions

1 Introduction

The presence of a solid boundary affects the properties
of a fluid, which becomes spatially heterogeneous normal
to the boundary. Besides density oscillations in the close
vicinity of the surface due to packing effects, the surface
produces perturbations which intrude into the bulk fluid
on a distance scale proportional to the bulk correlation
length and, therefore, gain increasing importance near the
critical point even far away from the surface. The critical
behavior of the local properties of the fluid near the surface
should follow universal scaling laws, which are different,
however, from the scaling laws of the bulk fluid. On strict
theoretical grounds simple scaling equations are valid only
in the immediate neighborhood of the critical point. How-
ever, both experimental and computer simulation studies
of the liquid-vapor coexistence curves of bulk fluids (see,
for example, comparative analysis of the available data in
Refs. [1,2]) evidence that contribution from the asymp-
totic power laws remains dominant over a surprisingly
wide temperature range, probably due to the alternating
character and small values of the non-asymptotic correc-
tions to scaling [3,4]. The same situation could also be
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expected for the surface critical behavior. In this case the
knowledge of the surface critical behavior of fluids opens
the possibility to predict the density profiles and related
properties of various fluids near solid boundaries in a wide
range of thermodynamic conditions.

Since bulk fluids belong to the universality class of the
3D Ising model, it is natural to map the surface critical be-
havior of fluids onto the surface universality classes of the
Ising model [9]. In the presence of a non-zero surface field
(h1 �= 0, the case relevant for fluids) in the Ising model
a wetting transition ultimately occurs at some tempera-
ture below the bulk critical temperature Tc [5–8]. Above
the temperature of the wetting transition the magnetiza-
tion of the single phase, remaining near the surface, is
predicted to follow the law of the so-called normal tran-
sition [10–12] with dominant regular behavior, i.e. with a
nonzero constant followed by a leading linear contribution,
proportional to the reduced temperature τ = (Tc−T)/Tc,
which is a measure of the temperature deviation from the
critical temperature Tc. The available computer simula-
tions of Ising systems at h1 �= 0 [5–7] did not allow to
analyze quantitatively the temperature dependence of the
surface magnetization both below and above the wetting
temperature.

There are no experimental studies of the temperature
evolution of the density profile near a solid surface along
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a liquid-vapor coexistence curve, which would allow to ex-
plore the surface critical behavior of one-component fluids.
Experimental studies of the order parameter in binary liq-
uid mixtures near a solid surface (difference between the
concentrations of the two coexisting phases) evidence that
its temperature dependence near the wall follows a power
law ∼τβ1 with a surface critical exponent β1 ≈ 0.8 [13–15].
This value is close to the critical exponent of the ordinary
transition of the Ising model at h1 = 0, that describes the
temperature evolution of the magnetization in a surface
layer [16,17].

It is usually supposed that the order parameter of
one-component fluids and binary fluid mixtures near a
surface obeys the laws of the ordinary transition below
the wetting (drying) temperature [18–20]. In the case of a
weakly attractive surface the long-range fluid-wall inter-
action suppresses a drying transition [20–22], and so the
order parameter near the surface should follow a tempera-
ture dependence ∼τβ1 up to the bulk critical temperature.

In fact, such a behavior of the order parameter was
observed in computer simulation studies of the liquid-
vapor phase transition of water near hydrophobic sur-
faces [23,24]. The temperature evolution of the densities
ρl,v(z, τ) in coexisting liquid (subscript l) and vapor (sub-
script v) phases near a substrate could be described by
the following equation:

ρl,v(z, τ) = (A0 + A1τ + A2τ
2...) ± B1τ

β1 , (1)

where z is the distance to the wall, A0(z) = ρc(z) = ρ(z,
τ = 0) is the local density at the critical point, A1(z),
A2(z)... and B1(z) are local system dependent ampli-
tudes. The asymmetric contribution in the brackets (di-
ameter of the coexistence curve) is the same in both
coexisting phases and determines the density profile at
the critical point. This contribution reflects a preferen-
tial adsorption of one “component” of a fluid (molecules
or voids). It should also include a singular contribution
∼τ (2−α) [11,12], with critical exponent α = 0.109 [25].
Additionally, a singular contribution due to pressure mix-
ing could also be expected, as in a bulk fluid, where it is
∼τ2β [26]. Note, however, that contrary to the bulk case,
the exponents of both of these singular terms exceed 1
and, therefore, the regular linear term remains the most
important asymptotically. The last term in equation (1)
represents a symmetric contribution to the densities of
the coexisting phases (has opposite signs in two phases),
and thus describes the order parameter ∆ρ = (ρl − ρv)/2,
which becomes zero at the critical point at any distance
from the surface. The value of the critical exponent β1

was found close to the value ≈0.8 of the ordinary transi-
tion [23,24].

The densities of the coexisting liquid and vapor phases
of water in a layer of molecular width near a hydrophobic
surface follow equation (1) in a wide temperature range:
0.05 < τ < 0.5 [24]. Moreover, the intrusion of the surface
critical behavior described by equation (1) deeper into the
bulk fluid was found to be governed by the bulk correlation
length ξ. So far, this was the only computer simulation
study of the surface critical behavior of the order param-

eter of a fluid. Naturally, the universality of the surface
critical behavior, reported for water near a hydrophobic
surface [24], should be tested for other fluids and, also, for
various strengths of fluid-wall interaction, below as well
as above the wetting (drying) temperature.

In this paper we present a study of the surface critical
behavior of a Lennard-Jones (LJ) fluids near a weakly at-
tractive wall by computer simulations of its liquid-vapor
coexistence curves in a slitlike geometry. Due to the long-
range character of the fluid-wall potential, the drying tran-
sition is not expected up to the critical temperature. This
allows investigation of the surface critical behavior by con-
sidering the evolution of the density profiles near a wall of
both coexisting phases in a wide temperature range.

2 Method

Gibbs ensemble Monte Carlo (GEMC) simulations [27]
were used to simulate liquid-vapor coexistence curves of
bulk and confined LJ fluid having interparticle interac-
tions of the form:

ULJ(r) = 4ε
[
(σ/r)12 − (σ/r)6

]
, (2)

where ε measures the well depth of the potential, whileσ
sets the length scale. The potential was spherically trun-
cated at a radius 2.5σ and left unshifted. No long-range
corrections were applied to account for effects of the trun-
cation. The density ρ used in the present paper is the
number density scaled byσ3, while T is the temperature
scaled by ε/kB, where kB is Boltzmann´s constant.

GEMC simulations allows to achieve direct equilibra-
tion between two coexisting phases, which are simulated
at a given temperature simultaneously in two simulation
cells. The numbers of molecules in the liquid (Nl) and
vapor (Nv) phases vary due to the molecular transfers be-
tween the two simulation cells, whereas their sum remains
constant. Equality of the pressures in the two phases is
achieved by random changes of the volumes of the simu-
lation boxes, keeping the total volume of the two boxes
constant. Simulations of the bulk liquid-vapor coexistence
were performed at 51 temperatures from T = 0.60 to
T = 1.17. The two lowest temperatures (T = 0.60 and
0.65) were below the bulk triple-point temperature of the
LJ fluid (the values 0.687 [28], 0.689 [29] and 0.692 [30]
were reported in the literature). The total number of
molecules in liquid and vapor phases Nl + Nv was about
2000 at low and 1500 at high temperatures. The edge
size L of the cubic simulation box for the bulk liquid
was about 12σ and the number of molecules varied from
∼1900 to ∼750 with increasing temperature. The number
of molecules in the vapor phase Nv varied from ∼100 at
the lowest studied temperature to ∼750 near the critical
temperature. As a strong difference between the number
of particles in the two simulated phases may distort the
shape of the coexistence curve [31,32], at high tempera-
tures we always tried to keep Nv close to Nl.

To estimate the effect of the system size on the co-
existing densities, at some temperatures the liquid-vapor
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coexistence was simulated for larger systems, where the
total number of particles in the liquid and vapor phases
Nl + Nv was about 7500, which results in a box size L
for the liquid of about 20σ. To test the effect of differing
numbers of molecules in the two simulation boxes of the
coexisting phases [31,32] we repeated the GEMC simu-
lations at T = 1.14 and T = 1.15 with Nl ≈ 3Nv and
Nl ≈ 0.7Nv, respectively. We found this effect negligible,
obviously due to the large system size.

To study the surface critical behavior, the LJ fluid was
confined in a slitlike pore with structureless walls. Each
wall interacts with particles of the fluid via a long-range
potential comprising a single plane of LJ molecules:

Uw(z) = 4ε f
[
0.4 (σ/z)10 − (σ/z)4

]
, (3)

where z measures the distance to the wall and the pa-
rameter f determines the strength of the fluid-wall inter-
action relatively to fluid-fluid interaction. No truncation
was applied to U w(z). In the present paper we report the
results obtained for a pore of width H = 12 σ and f = 0.3,
which corresponds to a weakly attractive (strongly solvo-
phobic) surface. Note, that this system is very similar to
the one, recently studied in equilibrium with the critical
bulk LJ fluid [33]. The total number of molecules in the
liquid and vapor phases Nl + Nv in the pore varied from
2700 molecules at low temperature to 2000 at high tem-
peratures. The lateral size L of the simulation cell for the
liquid was about 17σ and so the ratio L/H exceeded 1.
To explore the effect of the system size, several tempera-
ture points were simulated also for a larger system with
Nl + Nv of about 8000, that corresponded to L ∼ 34 σ.

The efficiency of the molecular transfers between the
simulation cells was improved by early rejection of inser-
tion attempts which would lead to strong repulsion [34].
For each temperature point the number of successful
transfers per particle between the coexisting phases of
the bulk as well as of the confined fluid was about 100
to 200, while the probability of successful transfers var-
ied from 0.5 to 10%. Close to the critical temperature
GEMC simulations are limited by identity exchanges be-
tween the simulation boxes, when in the course of a sim-
ulation run each simulation cell contains alternatively liq-
uid and vapor phase. Such exchanges are accompanied by
the appearance of liquid-vapor interfaces in one or both
simulation cells. This strongly increases the error bars of
the estimated densities of the coexisting phases and deter-
mines the high-temperature limit of the simulated liquid-
vapor coexistence curve. We do not give the densities of
the coexisting phases, when identity exchanges occured
(except for the highest-temperature point T = 1.17 in the
bulk LJ fluid with L ≈ 12 σ). The statistical uncertain-
ties of the simulated coexisting densities were estimated
by dividing the production period into blocks of 1000 MC
steps length and calculating the standard deviations of the
block averages. The density profiles of the coexisting liq-
uid and vapor phases and of some supercritical states in
the pore were obtained by subsequent Monte Carlo simu-
lations in the NVT ensemble. The local density was deter-

mined for layers of 0.02σ width, its statistical uncertainty
is about 1%.

3 Results

3.1 Bulk coexistence curve

The coexistence curve of the bulk LJ fluid was studied
by various simulation methods and its critical parame-
ters were found to be strongly sensitive to the details
of the interaction potential (cut-off, long-range correc-
tions, use of shifted potential) [27,35–51]. For example,
the values of the critical temperature Tc, reported for a
LJ potential, which was truncated at 2.5σ but not shifted
(1.1876(3) [36], 1.186(2) [52], 1.186 [37] 1.1879(4) [47]),
are essentially lower than the values, reported for a full
LJ potential (1.310 [39], 1.3120(7) [52], 1.3145(2) [47]),
1.3207(4) [50]). The critical density ρc is less sensitive to
the truncation of the pair potential: values of ρc from 0.314
to 0.316 were reported for the full potential [39,47,50,52],
whereas for a LJ potential, which was truncated at 2.5σ
and not shifted it varies from 0.316 to 0.320 [36,37,47,52].

The densities of the coexisting phases of the bulk LJ
fluid with truncated (at 2.5σ) and unshifted intermolecu-
lar potential, obtained in the present studies for the sys-
tem with L ≈ 12 σ and L ≈ 20 σ, are plotted in Figure 1.
In Table 1 the values are given for systems with L ≈ 12 σ.
Our results are in good agreement with the available data
for the same interaction [35–37], which are also shown in
Figure 1. A more sensitive comparison is based on the de-
pendence of the order parameter ∆ρ = (ρl − ρv)/2 on the
reduced temperature τ . This needs knowledge of the crit-
ical temperature Tc. The value of Tc could be estimated
from fits of the order parameter to the extended scaling
equation [3]

∆ρ = B0τ
β(1 + B∆τ∆ + B2∆τ2∆ + ...), (4)

where β = 0.326 is the critical exponent of the bulk coex-
istence curve, ∆ = 0.52 [25] is a correction-to-scaling ex-
ponent, which accounts to the deviations from the asymp-
totic critical behavior, and Bi are the system-dependent
amplitudes. Fits of equation (4) with the leading term only
(fits 1 and 2, Tab. 2) provide a rather satisfactory descrip-
tion of the data. In particular, if the temperature is fixed
at the most accurately estimated value Tc = 1.1876 [36],
the obtained value of β = 0.324 is close to the value of the
3D exponent of the Ising system β = 0.326. Two correc-
tion terms should be included into equation (4) in order to
achieve the best fits of our simulations data (fits 3 and 4,
Tab. 2). “Best” fit means, that addition of further correc-
tion terms does not improve its accuracy. The values of
the critical temperature Tc obtained from the fits of our
data (Tc = 1.1881(6) for the system with L ≈ 12 σ and
Tc = 1.1892(20) for the system with L ≈ 20 σ) are in good
agreement with the value Tc = 1.1876(3) obtained using
a histogram reweighting method with subsequent mixed-
field finite-size scaling [36]. Use of the latter value of Tc

does not worsen the quality of the fit (see fit 4 in Tab. 2).
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Fig. 1. Liquid and vapor coexistence densities, obtained for
the bulk LJ fluid (interaction potential truncated at 2.5 σ and
unshifted). Closed circles with error bars: box size L ≈ 12σ,
open circles with error bars: L ≈ 20 σ. Open squares, stars
and diamonds indicate the data points, reported in refer-
ences [35,36] and [37]. Diameters are shown by solid and open
triangles for boxes of size L ≈ 12σ and 20σ, respectively.

Table 1. Densities of the coexisting phases of the bulk LJ fluid
(interaction potential truncated at 2.5 σ, unshifted), obtained
for the system with L ≈ 12σ.

T ρl ρv T ρl ρv

0.60 0.8594(31) 97E-5(15) 0.94 0.6917(90) 0.0338(23)
0.65 0.8386(34) 0.00201(17) 0.95 0.6844(86) 0.0359(20)
0.70 0.8145(41) 0.00367(23) 0.96 0.6783(86) 0.0379(22)
0.71 0.8121(43) 0.00434(19) 0.97 0.6716(87) 0.0412(24)
0.72 0.8075(41) 0.00505(20) 0.98 0.665(10) 0.0452(32)
0.73 0.8017(44) 0.00521(43) 0.99 0.659(10) 0.0472(26)
0.74 0.7984(44) 0.00587(33) 1.00 0.651(10) 0.0494(25)
0.75 0.7927(46) 0.00637(65) 1.01 0.644(11) 0.0536(35)
0.76 0.7876(50) 0.00748(55) 1.02 0.637(11) 0.0586(38)
0.77 0.7833(47) 0.00806(38) 1.03 0.628(13) 0.0623(34)
0.78 0.7785(58) 0.00932(86) 1.04 0.622(12) 0.0669(53)
0.79 0.7741(49) 0.0098(11) 1.05 0.613(12) 0.0710(59)
0.80 0.7686(56) 0.0106(12) 1.06 0.605(13) 0.0751(59)
0.81 0.7642(58) 0.0120(11) 1.07 0.597(13) 0.0816(52)
0.82 0.7597(60) 0.0134(12) 1.08 0.590(14) 0.0896(64)
0.83 0.7533(61) 0.0141(14) 1.09 0.575(16) 0.0923(82)
0.84 0.7480(62) 0.0151(14) 1.10 0.568(15) 0.1027(66)
0.85 0.7425(64) 0.0165(15) 1.11 0.558(19) 0.1071(71)
0.86 0.7379(65) 0.0178(12) 1.12 0.547(20) 0.119(10)
0.87 0.7306(67) 0.0194(14) 1.13 0.529(22) 0.127(10)
0.88 0.7263(68) 0.0209(19) 1.14 0.524(22) 0.144(13)
0.89 0.7208(68) 0.0227(18) 1.15 0.502(30) 0.153(19)
0.90 0.7167(71) 0.0244(15) 1.16 0.489(29) 0.168(14)
0.91 0.7084(82) 0.0276(20) 1.165 0.479(29) 0.175(11)
0.92 0.7038(79) 0.0290(17) 1.17 0.463(48) 0.195(17)
0.93 0.6973(77) 0.0307(22)

Table 2. Values of the parameters obtained from fits of equa-
tion (4) to the order parameter ∆ρ. χ2 represents the mean-
square deviations normalized to a dispersion of the simulated
data of 0.001 with a confidence limit of 0.95. The fixed param-
eter are shown italic.

β T c B0 B∆ B2∆ χ2

bulk LJ fluid, L ≈ 12σ
1 0.324(1) 1.1876 0.5450(10) 2.55
2 0.326 1.1873(4) 0.5460(5) 2.60
3 0.326 1.1881(6) 0.5247(50) 0.216(42) −0.247(40) 0.74
4 0.326 1.1876 0.5298(21) 0.179(20) −0.213(22) 0.74

bulk LJ fluid, L ≈ 20σ
5 (0.326) 0.1892(20) 0.524(19) 0.209(70) −0.233(82) 4.55

confined LJ fluid, H = 12 σ, L ≈ 17 σ
6 (0.326) 1.1475(16) 0.322(13) 1.30 (21) −0.90(18) 2.04
7 (0.125) 1.1443(25) 0.097(9) 6.8(1.1) −3.05(65) 2.03

Fig. 2. Log-log plot of the order parameter ∆ρ vs. reduced
temperature τ for the bulk LJ fluid with L ≈ 12 σ (solid cir-
cles with error bars) and L ≈ 20σ (open circles with error
bars, shifted vertically). The data from [35,36] and [37] are
also shifted vertically and shown by open squares, triangles
and diamonds, respectively. The solid lines show the asymp-
totic critical behavior of the Ising model with a slope β = 0.326
and parameters of fit 2 (Tab. 2).

Taking into account, that the method used in [36] provides
the most reliable estimates of the critical parameters for
the considered LJ fluid, we accept the value of the criti-
cal temperature Tc = 1.1876 for the subsequent analysis.
Note, that a recent improvement of the finite-size scaling
method allows a more precise determination of the criti-
cal density but does not influence noticeably the critical
temperature [53].

The temperature dependence of the order parame-
ter ∆ρ is shown in Figure 2 in double logarithmic scale. All
data points from reference [35] and reference [37] and most
of the data points from reference [36] perfectly agree with
our data. Two high-temperature points, reported in [36],
slightly deviate upwards from the asymptotic critical be-
havior, probably due to the relatively small system size,
used in [36]. Note also, that a slight deviation downward
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Fig. 3. The effective critical exponent βeff (τ ) defined by equa-
tion (5) vs. reduced temperature τ for several model systems:
Ising model [54], full LJ potential [39] with critical tempera-
ture Tc = 1.312 from [52], square-well fluid [55] and LJ fluid
with the potential truncated at 2.5 σ (this work).

of the highest temperature point in our set for the system
with L ≈ 12 σ may be due to the identity exchanges be-
tween the simulation boxes, which effectively decrease the
difference between the estimated densities of the coexist-
ing phases.

The order parameter behavior closely follows the
asymptotic critical behavior with the Ising critical expo-
nent β = 0.326 in a surprisingly wide temperature range
(solid lines in Fig. 2). A more detailed analysis could be
achieved by considering the temperature dependence of
the effective exponent βeff , that describes the behavior
of the order parameter ∆ρ(τ) at a given temperature (or
temperature interval) and may be defined as

βeff (τ) = dln(∆ρ(τ))/dlnτ. (5)

βeff can be derived by numerical differentiation of the
∆ρ(τ) or by analytic differentiation of equation (4) with
the appropriate values of the fit parameters. We applied
the latter method to plot the temperature dependence of
βeff for the LJ fluid, studied in the present paper, and
for some other model systems (see Fig. 3). The deviations
of the truncated LJ fluid from the asymptotic critical be-
havior (horizontal line) are the smallest among the avail-
able simulated systems. The full LJ fluid with long-range
intermolecular potential shows strong positive deviations
towards the mean-field critical behavior, which is charac-
terized by the critical exponent β = 0.50. The Ising model
and square-well fluid with essentially short-range interac-
tions show a strong crossover to a regular behavior, which
corresponds to βeff → 0. So, the coexistence curve of the
truncated LJ fluid shows really a very weak crossover both
to the mean-field criticality and to the regular behavior
and, therefore, it may be a suitable and promising model
to study the surface critical behavior in a wide tempera-
ture range.

The diameter of the coexistence curve contains both
regular contributions (critical density ρc, linear term,
quadratic term, etc.) and singular terms (∼τ1−α, ∼τ2β ,
etc). Taking into account, that the singular term ∼τ2β

could be very small in simple fluids [56], not extremely

Fig. 4. Coexistence curve diameters for bulk LJ fluid with L ≈
12σ (solid circles with error bars), bulk LJ fluid with L ≈ 20 σ
(open squares), LJ fluid in pore with H = 12 σ and L ≈ 17 σ
(open circles with error bars) and LJ fluid in pore with H =
12σ and L ≈ 34 σ (solid squares). The bulk critical densities,
reported in reference [52] (diamond) and reference [36] (star)
are shown for comparison. The linear fits 1 and 5 and fits 2
and 6 to equation (6) (Tab. 3) are shown by dashed lines and
solid lines, respectively.

Table 3. Values of the parameters obtained from fits of equa-
tion (6) for the diameter ρd to the data for the bulk and con-
fined LJ fluid. χ2 represents the mean-square deviations with
a confidence limit of 0.95 normalized to a dispersion of the
simulated data of 0.001.

N ρc B1 B1−α χ2 comments

bulk LJ fluid, L ≈ 12σ
1 0.3156(4) 0.2277(15) - 1.23 highest T = 1.11
2 0.3269(7) 0.647(32) −0.403(30) 1.15 all data

bulk LJ fluid, L ≈ 20σ
3 0.3182(11) 0.2140(67) - 5.2 all data
4 0.3131(35) 0.544(221) −0.30(20) 4.7 all data

confined LJ fluid, H = 12 σ, L ≈ 17 σ
5 0.2407(9) 0.2764(41) − 5.6 highest T = 1.09
6 0.2473(26) 0.492(13) −0.21(12) 10 all data

close to the critical point, the equation for the diameter
can be written as

ρd = (ρl + ρv)/2 = ρc + B1τ + B1−ατ1−α + .... (6)

The diameter of the simulated coexistence curve of the
bulk LJ fluid is shown in Figure 4 and the various fits of
the diameter values to equation (6) are collected in Ta-
ble 3. The diameter is essentially linear in a wide tem-
perature range (see dashed line in Fig. 4 and linear fits
1 and 3 in Tab. 3) and only a few (4 or 7) points at the
highest studied temperatures deviate upwards from the
linear dependence. These points show clearly scattering
around the average values, which give ρc ≈ 0.335. The fits
of the equation (6) to the diameter values reproduces a
non-monotonic behavior of the diameter near Tc (fits 2
and 4 in Tab. 3, the former fit is also shown by a solid
line in Fig. 4). The value ρc = 0.3269(7), obtained for the
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system with L ≈ 12 σ, noticeably exceeds the critical den-
sities, reported in [36,37,47,52]. The value of the critical
density, obtained from the GEMC simulations, could be
underestimated due to the different numbers of particles
in the two coexisting phases [31,32]. With increasing sys-
tem size this effect becomes negligible and could shift the
estimated critical density to higher values. However, our
simulations show the opposite trend: increasing the system
size to L ≈ 20 σ causes a decrease of the critical density to
ρc = 0.3182(11) in the case of a linear fit (fit 3 in Tab. 3)
or even to ρc = 0.3131(35) by fitting equation (6) (fit 4 in
Tab. 3). So, an increase of the system size from L ≈ 12 σ
to L ≈ 20 σ shifts the value of the critical density closer to
the values ρc = 0.316(3) [52] and ρc = 0.3197(4) [36], ob-
tained by finite-size scaling methods. Note also, that the
mixed-field scaling method, used in [36,52], overestimates
the value of ρc of the square-well fluid due to the neglect
of the Yang-Yang anomaly [53].

3.2 Pore coexistence curve

The average density of the LJ fluid confined in a pore was
calculated assuming that the pore volume is equal to L2H.
In fact, the fluid-wall interaction is equal to zero at the
distance 0.86σ from the pore wall and so in an operational
approach this interval could be divided equally between
the volumes of the fluid and the solid. As a result, the
real volume accessible to the fluid molecules should be
reduced by a factor 1.077 and the average pore density
should increase accordingly. Throughout the paper we use
the average density in the pore without this correction on
the accessible volume.

The simulated coexistence densities and the diameter
for the LJ fluid in the slitlike pore with weakly attrac-
tive walls of width H = 12 σ are shown in Figure 5. The
data points obtained from the simulations using the pore
with lateral size L ≈ 17 σ and the pore with lateral size
L ≈ 34 σ coincide, except at the 3 highest temperatures,
where the density of the liquid phase becomes lower in
the large system (see Fig. 5). The critical temperature of
the pore coexistence curve is depressed due to the effect
of the confinement. The vapor phase in the pore has a
larger density than in the bulk and this effect increases
with temperature. At low temperatures this may be un-
derstood as a result of adsorption at the weakly attractive
substrate. At high temperatures this effect is the result of
a higher coexistence pressure due to the confinement in a
pore with weakly attractive substrate [33]. The density of
the liquid phase in the pore is shifted significantly to lower
values due to a depletion of the density near the weakly
attractive surface [34] and this affects the liquid density
more strongly than the increasing pressure.

The pore critical temperature is located between the
highest temperature, where a two-phase coexistence was
obtained (T = 1.13) and the lowest temperature, where
the two phases become identical in the GEMC simulations
(T = 1.15). In a slitlike confinement the 3D critical behav-
ior is distorted by a temperature crossover towards two-
dimensionality when approaching the pore critical temper-

Fig. 5. Liquid-vapor coexistence curve (circles with error
bars) and diameters (triangles) of the LJ fluid in the slit-
like pore H = 12 σ, L ≈ 17 σ (solid symbols) and H = 12 σ,
L ≈ 34σ (open symbols). The bulk coexistence curve (line) is
reproduced using equation (4) with set 4 of the fitting param-
eters from Table 2 and a linear diameter (fit 1 in Tab. 3).

ature and by the spatial heterogeneity of the fluid density
at all temperatures due to the influence of the surface.
There are no theoretical equations which give a descrip-
tion of the pore coexistence curve. Fits of the equation (4)
to the pore coexistence curve show, that the critical tem-
perature varies slightly depending on whether the critical
exponent β is fixed to the 2D or 3D value (see Tab. 2).
We determine for the pore critical temperature the value
Tc = 1.145(2).

The diameter of the pore coexistence curve is shown
in Figure 4. A linear temperature dependence is observed
in a wide range as in the bulk case (see dashed lines). The
fits of the diameter to equation (6) are given in Table 3
(fits 5 and 6). Deviations of the high-temperature points
upwards from the linear dependence and convergence to
the value ρc ≈ 0.255 can be noticed. In the larger sim-
ulated system with L ≈ 34 σ this effect disappears (see
Fig. 4).

3.3 Density profiles

The density of the coexisting liquid phase in the pore is
significantly lower than the coexisting liquid density in the
bulk (Fig. 5). This originates from a depletion of the liquid
density near the weakly attractive substrate and can be
studied by an analysis of the density profiles ρl,v(r), where
r is the distance from the pore center. At low temperatures
the density profiles in the liquid phase show strong oscil-
lations due to packing effects, which are still pronounced
even near the pore center (Fig. 6, upper curves). Such
strong density oscillations complicate the visual observa-
tion of a net density depletion at low temperatures. With
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Fig. 6. Density profiles of the LJ liquid in a slitlike pore with
H = 12 σ in equilibrium with a coexisting vapor phase. The
temperature increases from the top (T = 0.60) to the bottom
(T = 1.13).

Fig. 7. Density profiles of the LJ vapor in the slitlike pore
H = 12 σ in equilibrium with the coexisting liquid phase. Tem-
perature increases from the bottom (T = 0.80) to the top
(T = 1.13).

increasing temperature the density profiles become more
smooth. However, first and second shell oscillations are
still to be seen even at the highest temperature T = 1.13
(Fig. 6, lowest curve). Visual examination of the liquid
profiles in Figure 6 evidences that the density near the
surface decreases faster with temperature than the den-
sity in the pore interior.

The temperature evolution of the density profiles of
the vapor phase is shown in Figure 7. The vapor density
maximum near the wall remain pronounced in the whole
temperature range studied. Its position coincides with the
first density maximum in the liquid phase profiles and
corresponds to the minimum of the fluid-wall potential at
a distanceσ from the pore wall (see Eq. (3)). In the pore
interior the vapor density varies smoothly and remains
flat up to T = 1.07. At higher temperatures the profile of
the vapor becomes convex upwards and a second density
maximum can be seen at the highest temperatures due to
the appearance of packing effects with increasing vapor
density (Fig. 7).

Fig. 8. Profiles of the order parameter for the LJ fluid in the
slitlike pore with H = 12 σ. Temperature increases from the
top (T = 0.60) to the bottom (T = 1.13).

To study the surface critical behavior, we define the lo-
cal order parameter ∆ρ(r,τ) and the local diameter ρd(r,τ)
of the fluid near a surface similarly to the bulk case

∆ρ(r, τ) = (ρl(r, τ) − ρv(r, τ))/2 (7)

ρd(r, τ) = (ρl(r, τ) + ρv(r, τ))/2. (8)

The profiles of the order parameter ∆ρ(r,τ) are shown
in Figure 8. Due to a partial compensation of the den-
sity oscillations in the liquid and vapor phases, the order
parameter profiles are smoother than the liquid or vapor
profiles.

The profile of the order parameter in a lattice system
is free from oscillations near the boundary and may be
described by smooth functions. At distances larger than
the bulk correlation length ξ, the deviation of the order
parameter from the bulk value decays exponentially, when
moving away from the surface [9]. Near the surface (at
distances ∆z � ξ) the order parameter profile should obey
an algebraic law. Due to the density oscillations of the fluid
near the structureless surface the algebraic law could be
observed only in close proximity to the critical point, when
the bulk correlation length significantly exceeds the range
of density oscillations. In a confined fluid the approach to
the bulk critical temperature is limited by the pore critical
temperature and therefore the algebraic region may not
be detected. That is why we fitted the order parameter
profiles to a simple exponential law [9]:

∆ρ(∆z, τ) = ∆ρbulk(τ)
[
1 − exp

(
−∆z − λ

ξ−

)]
, (9)

where ∆ρbulk(τ) is the order parameter of the bulk fluid;
ξ− is the bulk liquid correlation length along the coex-
istence curve. Taking into account, that distances closer
then about 0.5σ to the wall are not accessible to the cen-
ters of particles, we define ∆z as the distance to a paral-
lel plane 0.5σ inside the pore. As this definition contains
some ambiguity, we introduced in equation (9) the ad-
justable parameter λ.



352 The European Physical Journal B

Fig. 9. Scaling of the order parameter profiles for seven tem-
peratures from T = 1.04 to 1.10. The dashed line is the func-
tion ∆ρ(∆z)/∆ρbulk = 1 − exp(−(∆z − 0.09 σ)/ξ0τ

−ν) with
ξ0 = 0.30 σ. For definition of ∆z see text.

First, we examine whether ∆ρ(∆z, τ) really follows the
universal critical behavior, described by equation (9). Tak-
ing into account that ξ− diverges near the critical point
in accordance with the power law ξ− = ξ0τ

−ν , where
ν ≈ 0.63 is the universal critical bulk exponent for the
correlation length for the 3D-Ising model [25], we used
∆z/τ−ν as a normalized distance to the surface. The nor-
malized density ∆ρ(∆z, τ)/∆ρbulk(τ) was calculated us-
ing ∆ρbulk(τ) obtained from simulations of the bulk co-
existence curve (fit 4, Tab. 2). In the temperature range
1.04 < T < 1.10 a universal master curve perfectly de-
scribes the order parameter profiles, excluding the first
oscillation near the wall (see Fig. 9). The dashed line in
Figure 9 corresponds to an amplitude of the correlation
length ξ0 = 0.30 σ and λ = 0.09 σ. Note, that the center of
the first fluid layer is situated near the potential minimum
at ∆z = 0.5 σ, while the fluid-wall interaction is repulsive
at ∆z ≤ 0. So, the order parameter becomes equal to
zero at some distance between the minimum and the zero
value of the fluid-wall potential. At higher temperatures
(T > 1.10, not shown in Fig. 9) the order parameter pro-
files ∆ρ(∆z,τ) deviate in the pore interior from the master
curve to lower values. This effect is caused by the influence
of the opposite wall and will be discussed below. At lower
temperatures (T < 1.04, not shown in Fig. 9) the oscil-
lations of the order parameter become more pronounced.
This limits the temperature range where the validity of
the universal behavior could be analyzed.

In a second approach, the correlation length was esti-
mated from fits of equation (9) to each profile ∆ρ(∆z,τ).
The obtained values of ∆ρbulk and ξ− are shown in Fig-
ure 10. Standard deviations of the fitting parameters
∆ρbulk and ξ− never exceed 1 and 3%, respectively. The
parameter λ fluctuated around zero and never exceeded a
few hundredths of σ, when the whole profile ∆ρ(∆z,τ) is
used for fitting. If only parts of the profile ∆ρ(∆z,τ) are
used and the parameter λ is fixed to 0, the obtained val-
ues of ∆ρbulk and ξ− varied no more than about 5 to 10%.
For illustration, the values ξ−, obtained from fits to parts
of the order parameter profiles extending from the wall to

Fig. 10. Temperature dependence of the fitting parameters
∆ρbulk (upper panel) and ξ− (lower panel), obtained from fits
of equation (9) (open circles) or equation (10) (open squares) to
∆ρ(∆z, τ ). The solid line in the upper panel shows the behavior
of the bulk order parameter. In the lower panel the dashed line
has the slope ν = 0.63, the dot-dashed line has the mean-field
slope ν = 0.5. The solid line in the lower panel is the fitting
curve ξ− = 0.57τ−ν (1 − 0.89τ 0.52)σ. Standard deviations do
not exceed symbol size.

various distances ∆z are shown in Figure 11 for two tem-
peratures. Comparison of the values ∆ρbulk, which were
obtained from the fitting of equation (9), with the values
of the true bulk order parameter, obtained from the bulk
coexistence curve (Fig. 10, upper panel), shows, that the
two sets coincide only at low temperatures. With increas-
ing temperature the fitted values of ∆ρbulk deviate slightly
upward from the true bulk data. At the highest 3 to 5 tem-
peratures the fitted values of ∆ρbulk rapidly turn down,
which correlates with the deviations of the ∆ρ(∆z,τ) pro-
files at these temperatures from the master plot, shown
in Figure 9. At the highest temperatures the tempera-
ture dependence of the correlation length ξ− agrees with
the expected asymptotic critical behavior with an ampli-
tude ξ0 = 0.43 σ (Fig. 10, lower panel, dashed line), while
at lower temperatures it bends downward. Note, that the
whole data set of ξ− can be fitted by an equation with
one correction-to-scaling term (see solid line at the lower
panel of Fig. 10), using an amplitude ξ0 = 0.57 σ and a
comparatively large amplitude (0.89) of the correction-to-
scaling term. Thus the values ξ0 = 0.43 σ and ξ0 = 0.57 σ
of the amplitude of the correlation length were obtained
when fitting the order parameter profiles including the
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Fig. 11. Variation of the fitting parameter ξ−, when equa-
tion (9) is fitted to parts of the order parameter profiles
∆ρ(∆z, τ ), which extend from the pore center to various dis-
tance ∆z from the surface (with fixed λ = 0).

first oscillation. Naturally, this effectively causes an in-
crease of the obtained values ξ0. An estimate of ξ0 from
the universal master curve (Fig. 9) neglecting the first os-
cillation of the order parameter results in the lower value
ξ0 = 0.30 σ. As the first density oscillation reflects only
some non-universal microscopic detail of the interaction
potential, the latter estimate seems to be more reasonable.
For comparison, the only estimate of the correlation length
for a LJ fluid (truncated, however, at another radius) from
molecular dynamic simulations gives an amplitude of the
correlation length ξ0 ∼ (0.27±0.2)σ [57], using the critical
temperature of the LJ fluid with full potential [39]. How-
ever, use of the critical temperature of the LJ fluid with
truncated potential [57] increases the value ξ0 almost by
a factor of two. The available experimental studies of no-
ble gases give for subcritical temperatures values of ξ0 of
about 20 to 22% of their Van-der-Waals diameters [58].

The values ξ−, which were obtained from the local or-
der parameter profiles of a fluid in a slitlike geometry, dif-
fer from the bulk correlation lengths in semi-infinite sys-
tems due to two main effects. The shift of the liquid-vapor
phase transition due to the confinement decreases ξ−,
whereas the effect of the opposite wall could increase the
“effective” value of the estimated correlation length. Thus,
a non-monotonous variation of the “effective” value of ξ−
with the pore width could be expected. To study these
effects, simulations of the coexisting densities in pores of
larger width should be performed and these studies are
in progress now. This should provide a new way to study
bulk correlation lengths of fluids by computer simulations.

Additionally we have fitted the order parameter profile
by the mean-field equation [9]:

∆ρ(∆z, τ) = ∆ρbulk(τ) tanh
(

∆z − λ

2ξ−

)
. (10)

These fits give values of the correlation length ξ− which
are about 1.6 times lower than the values, obtained from
the fits using equation (9) (see Fig. 10). At high tempera-
tures the behavior of the correlation length ξ− is compat-

Fig. 12. A double logarithmic plot of the local order pa-
rameter, averaged over layers of molecular width (see text for
the details) vs. reduced temperature: first (surface) layer (open
circles with error bars), 2nd to 5th layers (squares, triangles,
diamond, triangle down, respectively); 6th layer (pore interior,
solid circles). The slopes of the lines correspond to the exponent
β = 0.326 (dashed line), β1 = 1 (dot-dashed line), β1 = 0.82
(solid lines).

ible both with the Ising model (ν = 0.63, dashed line in
Fig. 10) and with the mean-field prediction (ν = 0.5, dot-
dashed line in Fig. 10). The behavior of ∆ρbulk obtained
from the fits using the mean-field equation (10) agrees well
with the data for the bulk coexistence curve, excluding the
three highest temperatures (see Fig. 10, upper panel).

3.4 Thermal and spatial crossover from bulk-like
to surface-like critical behavior

Density profiles of the liquid and vapor phases at the
pore coexistence curve were used to study the temper-
ature dependence of the local order parameters ∆ρi(τ),
obtained by averaging of ∆ρ(∆z,τ) over the ith layer of
about molecular width. The layer between the zero energy
point of the fluid-wall interaction (0.43σ from the wall,
∆z = −0.07) and the first minimum in the density oscilla-
tions (1.5σ from the wall, ∆z = 1) was defined as the first
(surface) layer. Each subsequent layer spreads over 1σ to-
ward the pore center. A double logarithmic plot of the lo-
cal order parameter ∆ρi(τ) vs. the reduced temperature τ
is shown in Figure 12. Error bars are shown for the first
layer. They were estimated, based on the uncertainties of
the coexisting densities obtained by GEMC simulations.
The order parameter in the surface layer ∆ρ1(τ) changes
practically linearly with τ (dot-dashed line in Fig. 12). In
the second layer the behavior of ∆ρ2(τ) is close to a power
law with exponent β1 = 0.82 in a wide range of tempera-
tures (see squares and solid line in Fig. 12). In the third
and subsequent layers a crossover from bulk-like behavior
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Fig. 13. Lines and symbols are the same as in Figure 12. The
data for the 3rd and subsequent layers are shifted vertically.
The position of the crossover points from bulk-like to surface-
like behavior in each layer are denoted by stars.

(dashed line, Fig. 12) to surface behavior at smaller τ , i.e.
closer to the critical point, is observed.

The crossover temperature could be extracted from
this plot as the temperature of the crossing point of the
two straight lines, which represent bulk behavior with the
exponent β = 0.326 (dashed lines in Fig. 13) and surface
critical behavior with the exponent β = 0.82 (solid lines).
These crossover points are shown by stars in Figure 13 for
the 2nd to 6th molecular layers.

To study the dependence of the corresponding
crossover temperature τ∗ on the distance from the sur-
face ∆z in more detail, we performed the same analysis for
a finer grid of layers of 0.2σ width. The obtained depen-
dence is shown in Figure 14. The values of the correlation
length ξ−, obtained from fits of (9) to the order parameter
profiles ∆ρ(∆z,τ), are also shown in Figure 14 (right axis,
solid circles). Comparison of the two dependencies shown
in Figure 14 evidences that the crossover from bulk to sur-
face critical behavior is governed by the correlation length:
the crossover in a definite fluid layer occurs, when its dis-
tance to the solid surface is about twice the correlation
length, i.e. at ∆z ≈ 2ξ−.

The spatial crossover from bulk to surface critical be-
havior was also studied by using the effective local critical
exponent βeff (∆z,∆T), which was obtained from fitting
the temperature dependence of ∆ρ(∆z,τ) by the equation

∆ρ(∆z, τ) = Beff τβeff (∆z,∆T ). (11)

The value of βeff (∆z,∆T) essentially depends on the tem-
perature interval ∆T, used in the fit. It is close to the value
of some true critical exponent if the fitting temperature
interval ∆T is outside the crossover regions.

In Figure 15 we show the local effective critical ex-
ponent βeff (∆z,∆T) as a function of the distance from

Fig. 14. Layer distance ∆z vs. crossover temperature (left
axis, open symbols) and temperature dependent correlation
length ξ−(τ ) found from fits of equation (9) to the profiles
∆ρ(∆z,τ ) (right axis, solid circles).

Fig. 15. Spatial crossover of the local effective exponent
βeff (∆z,∆T), determined from equation (11) applied to the
local order parameter ∆ρ(∆z,τ ) in different temperature in-
tervals ∆T: 0.72 ≤ T ≤ 1.12 (circles, lowest curve), 1.01 ≤
T ≤ 1.12 (squares, middle curve) and 1.08 ≤ T ≤ 1.12 (tri-
angles, upper curve). The critical exponent of the bulk fluid
β and the surface critical exponent β1 of the Ising model are
shown by dashed and solid horizontal lines, respectively. r is
the distance from the pore center, ∆z the distance from the
wall.

the pore center for 3 different temperature intervals ∆T
used for the fit. βeff (∆z,∆T) from averaging over the
whole studied temperature range (see circles in Fig. 15)
shows a pronounced crossover from about β = 0.38 in
the pore center about 1.1 in the first surface layer. More-
over, βeff (∆z,∆T) shows oscillations, which correlate with
the density oscillations, observed in the liquid phase at
low temperatures. In particular, βeff (∆z,∆T) achieves the
first local maximum of about 1.1 at the minimum of
the fluid-wall potential. If the fitting temperature inter-
val is reduced to 1.01 ≤ T ≤ 1.12, the oscillations of
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βeff (∆z,∆T) become less pronounced and the effective ex-
ponent varies between 1 at the minimum of the fluid-wall
potential to about 0.5 in the pore center. In the narrow
high temperature interval 1.08 ≤ T ≤ 1.12 the spatial
crossover of βeff (∆z,∆T) is rather smooth, however, in the
first surface layer βeff (∆z,∆T) is still higher (about 0.9)
than in subsequent layers (see Fig. 15). So, the spatial
crossover of βeff (∆z,∆T) evidences that the localization
of molecules near the wall due to the fluid-wall potential
distorts the surface critical behavior toward higher val-
ues of β1. A similar behavior was observed for the surface
layer of water near a hydrophobic wall [24]. Away from
the surface the density oscillations disappear at high tem-
peratures and β1 approaches the value β1 = 0.82 of the
ordinary surface transition of the Ising model.

3.5 Density profiles of supercritical fluids

Density profiles of the LJ fluid confined in the slitlike
pore were calculated for various average densities along
the bulk critical isotherm Tc = 1.1876. At low densi-
ties the attractive fluid-wall potential caused adsorption
of molecules near the surface and the profile in the pore
interior is concave down (Fig. 16a). With increasing den-
sity the effect of density depletion near a weakly attrac-
tive substrate develops and provides density profiles which
are convex up (Fig. 16b). The largest density gradient at
T = Tc roughly corresponds to the bulk critical density
ρc ∼ 0.3. Further increase of the average fluid density in
the pore results in density oscillations due to the pack-
ing effect (Fig. 16c). In the very dense supercritical fluid
the density oscillations extend through the whole pore
(Fig. 16d).

The density profiles at the bulk critical temperature
from Figure 16 were fitted by equation (9), using ρbulk

and ξ+ instead of ∆ρbulk and ξ−, respectively. The pa-
rameter λ was found close to zero, when the average pore
density was below 0.15 or above 0.5. In the intermediate
density range λ passes trough a maximum of λ ≈ 0.22 σ,
when the pore average density is equal to 0.27. Note, that
a similarly small value of λ was obtained from the master
curve of the order parameter profiles (see Fig. 9). The ob-
tained values of the supercritical correlation length ξ+ are
shown in Figure 17. The maximum of ξ+ is observed, when
the average pore density is about 0.29. When the correc-
tion factor, which accounts for the accessible volume, is
applied to the average pore density (see Sect 3.2), this
value becomes practically equal to the bulk critical den-
sity ρc ≈ 0.32. Note also, that the corresponding fitting
parameter value ρbulk ≈ 0.42 in equation (9) noticeably
exceeds the critical density of the bulk LJ fluid .

Also, the temperature evolution of the density pro-
file at supercritical temperatures was studied along the
pore critical isochore ρc = 0.255 (Fig. 18). All profiles
cross in a point, where the density is about the bulk crit-
ical density. The density gradient from the pore surface
to the interior decreases with increasing temperature and
achieves a maximum at about the pore critical tempera-
ture T = 1.145. Accordingly, the correlation length, ob-

Fig. 16. Density profiles of LJ fluid confined in slitlike pore
with H = 12 σ along the bulk critical isotherm Tc = 1.1876
at various average pore densities: ρ = 0.05 (a), 0.20 ≤ ρ ≤
0.30 (b), ρ = 0.50 (c) and ρ = 1.00 (d). The profiles b, c and
d are shifted vertically. The averaged densities are shown by
dashed lines.

Fig. 17. Correlation length obtained from the fits of the equa-
tion (9) to the density profiles along the bulk critical isotherm
Tc = 1.1876 (Fig. 16).

tained from fits of equation (9) to the density profiles, also
achieves its maximum ξ+ = 1.87 σ at this temperature.
The parameter λ varies in the range 0.21σ ≤ λ ≤ 0.27 σ.
So, we may conclude, that the value of about 0.2σ for λ
determines the effective fluid boundary, when the density
oscillations and the details of the fluid-wall potential are
weak or negligible. This is the case for the critical isotherm
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Fig. 18. Density profiles of LJ fluid confined in slitlike pore
with H = 12 σ along the pore critical isochore ρc = 0.255 at
the temperatures T = 1.145, 1.1876, 1.20, 1.25, 1.30, 1.40 1.50
and 1.60.

Fig. 19. Temperature dependence of the average pore density
diameter (open triangles) and of the local density diameters
ρd in the surface layer (open circles) and near the pore center
(open squares). The corresponding average and local densities
at supercritical temperatures along the pore critical isochore
ρ = 0.255 are shown by the respective solid symbols. The be-
havior of the diameter for the bulk LJ fluid is shown by the
dashed line.

in a wide density interval around the critical value and for
the critical isochore. Besides, neglecting oscillations of the
order parameter profile also gives a similar value of λ at
the coexistence curve (Fig. 9).

The temperature dependence of the average and lo-
cal pore density diameters and of the local density along
the pore critical isochore is shown in Figure 19. The av-
erage density diameter as well as the diameters in the
surface layer and in the pore interior are continuously
crossing over to the average and local densities at super-
critical temperatures. The pronounced cusp in Figure 19
indicates, that the anomaly of the pore diameter (fit 6 in
Tab. 3) originates from the behavior of the fluid in the
pore interior.

4 Discussion

Computer simulations of a LJ fluid and water [24] evi-
dence a highly universal surface critical behavior of fluids
near weakly attractive surfaces. The long-range fluid-wall
interaction suppresses a drying transition and therefore
the order parameter could be studied in a wide tempera-
ture range. The temperature dependence of the local den-
sities of the coexisting liquid and vapor phases near the
surface could be described by equation (1). Near the sur-
face this equation is valid in the whole temperature range,
where the liquid phase exists: from supercooled tempera-
tures to close proximity of the liquid-vapor critical point
(τ ≥ 0.05). This surface critical behavior intrudes into the
bulk fluid on distances determined by the bulk correlation
length ξ−. This means, that the distance from the surface,
at which the local order parameter crosses over from bulk-
like critical behavior with exponent β = 0.326 to surface
critical behavior with exponent β1

∼= 0.8, increases with
increasing temperature (approaching the critical point).
The width of the fluid layer which follows the surface crit-
ical behavior described by equation (1) is about 2ξ− and
diverges as τ−ν when approaching the critical tempera-
ture.

The estimated value of the surface critical exponent
is in good agreement with the value β1 = 0.82 obtained
for Ising magnets at zero surface field (h1 = 0) [59]. The
largest deviations from the Ising behavior are observed
in the first surface layer, where the fluid-wall potential
causes a strong localization of the molecules both in the
liquid and vapor phases, which does not disappear even
at supercritical temperatures (Fig. 18). As a result, the
surface critical exponent, estimated for the first surface
layer is about 0.9 for water [24] and 0.9 − 1.0 for the LJ
fluid (Figs. 12 and 15). Obviously, this deviation reflects
the trend toward mean-field behavior with β1 = 1 due to
the localization of the molecules near the minimum of the
fluid-wall potential. Besides, the effective value of the local
exponent βeff (∆z, ∆T), determined in a wide temperature
range, varies similarly to the density oscillations in the
liquid phase due to the packing effect (Fig. 15).

It may be assumed, that the difference ∆ρ between the
densities of the coexisting phases near the surface should
follow the behavior ∼τβ1 with β1 = 0.82 also near strongly
attractive surfaces below the wetting temperature. The
contribution ∼τβ1 being present in both coexisting phases
below the wetting temperature, as given in equation (1).
Its disappearance in the liquid phase above the wetting
temperature, when a liquid layer appears between the va-
por and the solid surface, seems to be unlikely. So, the
liquid density near the surface (both in the liquid phase
and in the wetting layer) should include the positive con-
tribution ∼τβ1 . This means, that equation (1) could be
valid also above the wetting temperature for the wetting
phase. The absence of a vapor phase near the surface does
not allow to separate symmetric and asymmetric contri-
butions in equation (1), and so the extraction of the con-
tribution ∼τβ1 is complicated by the presence of a linear
regular term. In order to distinguish two contributions
with close values of the exponents (0.8 and 1 in this case),
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a close approach to the critical point is needed. The avail-
able simulation methods may provide the high accuracy,
necessary to solve this problem [56].

It was suggested [10–12], that a fluid near an attrac-
tive wall in general should be mapped onto the normal
transition universality class of the Ising model, when a
non-zero surface field h1 acts on the spins in the surface
layer. However, the order parameter of the liuqid-vapor
phase transition of water [24] and LJ fluid near weakly at-
tractive surfaces follows a power law, which corresponds
to the ordinary transition universality class of the Ising
model. Below we analyze the origin of this contradictions
and propose a way to preserve isomorphism of fluids and
Ising model for the surface critical behavior.

In the case of the normal transition in Ising model
(h1 �= 0) the magnetization in the surface layer m1 in
linear-response approximation contains regular and singu-
lar contributions above the critical temperature [11,12]:

m+
1 = m1C + A1τ + ... + A2−ατ2−α. (12)

Below the critical temperature, a similar contribution m−
1

should appear near the surface in the magnetizations mI

and mII of the two coexisting phases. Due to the sym-
metry of the bulk Ising magnet (mI = −mII) the two
phases contain the same contribution m−

1 (of same value
and sign). However, at subcritical temperatures the sur-
face magnetization should also include a symmetrical term
∼τβ1 , which describes the temperature dependence of the
magnetization at zero surface field (h1 = 0). This term
was in fact overlooked in references [11,12]. This symmet-
ric contribution accounts for the missing-neighbor effect
and, therefore, has an opposite sign in the two coexisting
phases. As a result, the surface magnetizations mI

1 and
mII

1 in the two phases along the coexisting curve should
have the following temperature dependence:

mI
1 = B1τ

β1 + m1C + A′
1τ + ... + A′

2−ατ2−α, (13)

mII
1 = −B1τ

β1 + m1C + A′
1τ + ... + A′

2−ατ2−α. (14)

So, in the presence of a non-zero surface field h1, the two
phases of the Ising magnet are no more symmetrical and
the magnetization near the surface does not vanish at the
critical point.

However, the order parameter of a phase transition
is a measure for the dissimilarity of the two coexisting
phases, which should vanish at the critical point. In Ising
system, magnetization is a proper order parameter for a
bulk phase transition. Moreover, in the case of ordinary
and special transitions [9] both bulk and surface magneti-
zations are equal to zero at the bulk critical temperature
and therefore the magnetization remains the proper order
parameter. In the case of an extraordinary transition, two
phase transitions (bulk and surface) occur in the system.
The surface magnetization remains nonzero at the bulk
critical point and vanishes at the surface critical point
only, which temperature is located above Tc. In this case,
the bulk magnetization serves as an order parameter for
the bulk phase transition, while the surface magnetization
is the proper order parameter for the surface phase transi-
tion. In the case of the normal transition there is a single

(bulk) phase transition and the order parameter should
vanish at the bulk critical temperature. This means, that
the magnetization could not be used as an order parameter
for the normal transition, as it was done in the available
theory of the normal transition [11,12].

This inconsistency could be avoided by generalization
of the order parameter for Ising systems in a way adopted
for such asymmetrical systems as bulk fluids. Namely, we
propose to use the difference ∆m(z,τ) between the local
magnetizations of the two coexisting phases as the order
parameter of the phase transition in the Ising magnets:

∆m(z, τ) = (mI(z, τ) − mII(z, τ))/2. (15)

This order parameter is the deviation of the magnetization
in each coexisting phase from the average magnetization
md(z,τ) (diameter) at the same temperature:

md(z, τ) = (mI(z, τ) + mII(z, τ))/2. (16)

In particular, the generalized order parameter ∆m(z,τ)
and the diameter md(z,τ) have the following temperature
dependence in the surface layer :

∆m1(τ) = B1τ
β1 , (17)

m1,d(τ) = m1C + A′
1τ + ... + A′

2−ατ2−α. (18)

In Ising magnets the order parameter ∆m(z) is zero
everywhere at T = Tc at any surface field, excluding the
case of the extraordinary transition, where ∆m(z) vanishes
at the surface critical point. Note, that the proposed gen-
eralization (Eq. (15)) is equivalent to the standard defini-
tion of the order parameter, i.e. the magnetization, in the
bulk case as well as in the cases of ordinary, extraordinary
and special transitions, because of the symmetry of the
coexisting phases (mI = −mII).

The average magnetization defined by equation (16)
(i.e. diameter of the coexistence curve) is equal to zero in
bulk Ising magnets and also near the surface with h1 = 0.
In the case of h1 �= 0, a non-zero diameter md(z) reflects
the response of the system to the surface field and de-
scribes the preferential adsorption of one kind of spins. At
T ⇒ Tc the profile md(z) continuously crosses over to the
magnetization profile in the supercritical region, known as
critical adsorption [60].

We conclude, that the surface critical behavior of the
order parameter ∆m(z,τ) of phase transition in Ising mag-
nets defined by equation (15) should follow the laws of the
ordinary transition. The diameter of the coexistence curve
md(z,τ) defined by equation (16) should follow the laws of
the normal transition. The proposed generalization of the
order parameter for Ising model allows a self-consistent
description of magnetization near the surface below and
above the critical temperature and preserves isomorphism
of the critical behaviors of fluids and magnets.
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