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Abstract
Depletion of the liquid density near a solid surface with a weak long-range
fluid–surface interaction was studied by computer simulations of the liquid–
vapour coexistence of a Lennard-Jones (LJ) fluid confined in slitlike pores.
In a wide temperature range the liquid density decreases towards the surface
without the formation of a vapour layer between the liquid and the solid
surface. This evidences the absence of a drying transition up to the liquid–
vapour critical point. Two contributions to the excess desorption �tot were
found. The first one, �ξ ∼ ρbulkξ , exists at any temperature and diverges
as the bulk correlation length ξ when approaching the liquid–vapour critical
temperature Tc. The second contribution, �L ∼ ρbulk L0, originates from a
microscopic drying layer near the solid boundary. At high temperatures the
thickness L0 of the drying layer increases in accordance with the power law
L0 ∼ − ln(1 − T/Tc), indicating a drying transition at Tc. The drying layer
can be suppressed by strengthening the fluid–surface interaction, by increasing
the fluid–surface interaction range or by decreasing the pore size.

1. Introduction

Knowledge of the liquid density profiles near weakly attractive surfaces is necessary for
the understanding of various phenomena, such as hydrophobic attraction between extended
surfaces in water [1], slipping flow of liquids near a weakly attractive surface [2], and
conformational stability of biomolecules in aqueous solutions. Experimental studies evidence
a depletion of the liquid density near weakly attractive substrates [3–8]. However, the shape
of the liquid density profiles could not be derived unambiguously from experimental data.

In the vast majority of practically important situations, the liquid is close to equilibrium
with the vapour, i.e. close to the liquid–vapour coexistence. At the liquid–vapour coexistence
curve the vapour (liquid) phase undergoes a wetting (drying) transition near the solid boundary
at some temperature Tw (Td) [9–12]. Such a surface transition appears as the formation of
a macroscopically thick liquid layer in the vapour phase near a strongly attractive surface
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(wetting transition) or as a vapour layer in the liquid phase near a weakly attractive surface
(drying transition). When crossing Tw (Td) along the liquid–vapour coexistence curve, the
liquid (vapour) layer could appear continuously (second-order or critical wetting/drying) or
discontinuously (first-order wetting/drying).

Wetting transitions have been extensively studied theoretically, experimentally and by
computer simulations for various systems. The temperature of the wetting transition and its
order were found to be strongly sensitive to the details of the fluid–fluid and fluid–surface
interaction [12]. In particular, in model systems with short-range fluid–surface potential, the
wetting transition can be of first or second order, depending on the strength of the fluid–
surface potential [10, 13, 14]. The long-range fluid–surface interaction can change drastically
the character and temperature of the wetting transition. Critical wetting transitions become
first order due to long-range fluid–surface interactions [15]. The interplay between the short-
range and long-range fluid–surface interaction potentials can suppress critical wetting up
to the liquid–vapour critical temperature [16] and produce a sequential (multiple) wetting
transition [17].

A drying transition which is accompanied by the formation of a liquid–vapour interface at
some distance from the substrate was observed for short-range fluid–wall interactions (hard-
wall [18–20], square-well [14, 21] and truncated LJ interactions [22]) in computer simulations
and in density functional studies. Contradictory reports concerning the order of the drying
transition in systems with short-range fluid–wall interaction were discussed in [23]. A long-
range fluid–surface potential (for example, via van der Waals forces) suppresses a drying
transition at subcritical temperatures, which then can occur at the bulk critical temperature Tc

only [15, 16, 24]. Since a long-range interaction between fluids and solids is unavoidable in
real systems, the formation of a macroscopic vapour layer between the liquid and the surface
is impossible. Indeed, a drying transition was never observed experimentally [3, 25].

Although a macroscopic vapour layer cannot appear near a surface with weak long-range
attractive potential, an effect distantly related to a drying transition could be expected in the
liquid phase below Tc as the appearance of a drying layer near the surface (which is not a
macroscopic vapour layer and could be considered as ‘embryo of drying’ [26]). This drying
layer can noticeably influence the liquid density profile near a solid surface.

Due to the necessary boundary conditions the behaviour of the fluid density near a planar
solid substrate can only be studied by computer simulations in a pore geometry. Most of
the computer simulation studies of wetting and drying transitions were performed in NVT
ensembles, where slitlike pores with symmetrical or asymmetrical walls were incompletely
filled (see, for example, [22, 24]). In such simulations the average density of the confined fluid is
deeply inside the two-phase region and a correct reproduction of the liquid–vapour coexistence
is questionable. Even when the liquid–vapour interface in such a pore is well established, it is
formed parallel to the wall and, therefore, the wetting phase is represented in such a system as
a wetting layer only. In our computer simulation studies of surface transitions we use another
approach: simulations of the liquid–vapour coexistence curve of fluids, confined in pores of
various sizes, with subsequent extrapolation of the results to semi-infinite systems.

The chemical potential of the liquid–vapourphase transition of the confined fluid is shifted
with respect to the bulk. This suppresses the formation of a wetting or liquid layer along the
liquid–vapour coexistence of the confined fluid below and above the temperature of the wetting
transition, respectively [12]. To study the possible appearance of a drying (or vapour) layer
in the saturated liquid near a weakly attractive surface, we have investigated the temperature
evolution of the density profiles along the pore coexistence curve. The data obtained for fluids
in pores of various sizes and with different fluid–surface potentials are compared with the
available theoretical predictions and experimental observations.
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An LJ fluid was confined in pores of width H = 40σ (σ is the molecular diameter)
with weakly attractive walls, which interact with the molecules of the fluid via a long-range
potential. The well depth of the fluid–surface potential was about 70% of the well depth of
the fluid–fluid potential. This is close to the interaction between neon atoms and a caesium
substrate, the weakest known physisorption system, recently studied experimentally and by
simulations [3, 25]. In our recent paper [27], the liquid–vapour coexistence curve of an LJ
fluid was simulated in a smaller pore with H = 12σ ) with the same fluid–surface potential.
A depletion of the liquid density near the pore wall was observed in a wide temperature range
along the pore coexistence curve without any trend towards the formation of a vapour or drying
layer. It was found that the fluid near the wall follows the universal power laws of the surface
critical behaviour of Ising systems [28, 29]. In particular, a universal behaviour of the local
order parameter profiles, defined as the difference between the local densities ρl(�z, τ ) and
ρv(�z, τ ) of the coexisting liquid and vapour phases at some distance �z from the pore walls,
was observed in a wide temperature range [27, 30, 31]. The intrusion of the surface critical
behaviour into the bulk fluid is governed by the bulk correlation length ξ−, which diverges
when approaching the critical point:

ξ−(τ ) = ξ0τ
−ν (1)

where τ = (1 − T/Tc) is the reduced deviation of the temperature T from the bulk critical
temperature Tc, ν = 0.63 [32] is the universal critical exponent and ξ0 is the system-dependent
amplitude.

In view of the high sensitivity of the surface phase transitions to small changes of the
chemical potential, the observation of a vapour or drying layer in a pore with H = 12σ was,
probably, prevented by the shift of the liquid–vapour phase transition in such a rather small
pore. To reduce the influence of confinement and to promote the observation of a vapour or
drying layer, the pore width should be as large as possible. In the present paper we approach
the bulk coexistence by performing simulations in a very large pore of width H = 40σ . To
extrapolate the results to a semi-infinite system the liquid–vapour coexistence of the LJ fluid
in several pores of intermediate sizes between H = 12 and 40σ was simulated.

2. Method

Coexistence curves of the confined LJ fluid were determined using Monte Carlo simulations in
the Gibbs ensemble (GEMC) [33]. GEMC simulations allow one to achieve direct equilibration
of the two coexisting phases, which are simulated at a given temperature simultaneously in
two simulation cells. Equality of the chemical potentials in the two phases is achieved by
molecular transfers between the simulation boxes. The efficiency of the molecular transfers
was improved by early rejection of insertion attempts with at least one intermolecular distance
less than 0.5σ , that would lead to strong repulsion. The acceptance probability of molecular
transfers varied from 0.5% at low temperatures to about 10% at high temperatures. Equality
of the pressures in the coexisting phases is achieved by random changes of the volumes of the
simulation boxes, keeping the total volume of the two boxes constant. The maximal variation
of the volume of each box was about 1–1.5%, providing an acceptance probability of this
move from 20 to 30%. In the course of the GEMC simulations with overall lengths of 108

MC steps, the sequence of MC moves was random. Conventional MC moves, molecular
transfers and volume changes were performed with the probabilities ∼75%, ∼25% and <1%,
respectively. For each temperature point the number of successful transfers per particle between
the coexisting phases varied from dozens at low temperatures to ∼350 near the pore critical
temperature. More details of the simulations, parameters of the model fluid, as well as its bulk
coexistence curve are given in our previous paper [27].
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To study the behaviour of the liquid near the surface, the LJ fluid was confined in a
slitlike pore with structureless walls. Each wall interacts with the particles of the fluid via the
long-range potential of a single plane of LJ molecules:

Uw(z) = 4ε f
[
0.4 (σ/z)10 − (σ/z)4] , (2)

where z measures the distance to the wall, the parameter f determines the strength of the fluid–
wall interaction relatively to fluid–fluid interaction and σ is the diameter of the LJ particles.
No truncation was applied to Uw(z). In the present paper we report the results obtained for
a pore of width H = 40σ and Uw1(z) = Uw(z, f = 0.3), which corresponds to a weakly
attractive (solvophobic) surface with a well depth of the fluid–wall interaction of about 70%
of the well depth of the fluid–fluid interaction. The total number of molecules in the liquid and
vapour phases was about 8000. The average lateral size of the simulation box which contains
the liquid phase increases from 17 to 21σ with increasing temperature. To study the effect
of the pore size on the liquid density profile and the appearance of a drying layer, we also
simulated the liquid–vapour coexistence and the liquid density profiles at T = 1.10 in pores
of width H = 16, 22 and 26 σ with the same fluid–wall interaction Uw1(z).

To explore the effect of the strength of the fluid–wall potential on the liquid density profile
we also simulated the liquid–vapour coexistence in a pore with slightly stronger fluid–surface
interaction Uw2(z) = Uw(z, f = 0.4). Additionally, the effect of the range of the fluid–wall
interaction was explored by simulation of a system with a slower decay of the fluid–wall
potential Uw3(z), which follows from an integration of the individual interactions over the
half-space of LJ molecules and can be described by the equation

Uw3(z) = 4ε f ∗
[(

σ ∗/z
)9 − (

σ ∗/z
)3

]
. (3)

The parameters of the potential Uw3(z) were adjusted to get equal well depths of the potentials
Uw3(z) and Uw1(z). This was achieved using σ ∗ = 0.8328σ and f ∗ = 0.468 in equation (3).

The density ρ used in the present paper is the reduced number density (scaled by σ 3),
while T is the reduced temperature (scaled by ε/kB, where kB is Boltzmann’s constant). The
average density of the LJ fluid confined in a pore was calculated taking into account the volume
accessible to the fluid molecules. The fluid–wall interaction is equal to zero at the distance
0.86σ from the pore wall and so in an operational approach this interval could be divided
equally between the volumes of the fluid and the solid. As a result, the volume accessible to
the fluid molecules is the total pore volume L2 H reduced by a factor 1.022 for the pore of
width H = 40σ . Accordingly, as the distance to the pore wall �z we used the distance to the
parallel plane 0.5σ inside the pore.

The density profiles of the liquid were obtained by Monte Carlo (MC) simulations in
the NVT ensemble, using the average densities of the liquid phase obtained in the GEMC
simulations. At high temperatures, the strong density gradient near the pore wall makes the
determination of reliable density profiles in such large pores very time consuming. This
problem was overcome by using two kinds of move in MC simulations in the NVT ensemble.
The first kind of move is a standard MC move with a maximal displacement of molecule, which
provides an acceptance probability of about 50%. The second kind of move is a long-distance
molecular transfer inside the simulation box: an attempt to place a randomly chosen fluid
molecule into a randomly chosen position. This move is similar to the one used in GEMC
simulations for molecular transfers between the two simulation boxes. Such long-distance
molecular transfers essentially improve the sampling of density profiles, which show a strong
gradient normal to the pore wall. The local density was determined for layers of 0.02σ width.
The resulting density profiles were averaged over 105 configurations taken each 1000th MC
step. This yielded a statistical uncertainty less than 1%.
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Figure 1. Coexistence curve and diameter of the LJ fluid confined in the slitlike pore of width
H = 40σ (circles). The bulk coexistence curve (coexisting densities ρl and ρv) and its diameter
((ρl + ρv)/2) of the LJ fluid [27] are shown by solid lines.

3. Results

The obtained densities of the coexisting vapour (ρv) and liquid (ρl) phases and the diameter
((ρl + ρv)/2) of the coexistence curve of the LJ fluid in the slitlike pore with weakly attractive
walls of width H = 40σ are shown in figure 1. The critical temperature of the pore coexistence
curve is depressed due to the effect of the confinement. It is estimated as T = 1.165 ± 0.005,
that is only about 0.02 below the bulk critical temperature Tc = 1.1876 [27, 34]. This indicates
that in this case the pore coexistence curve is rather close to the coexistence curve of the bulk
fluid. In such a wide pore, we may therefore expect that below the pore critical temperature the
properties of the fluid near a wall are only slightly influenced by the presence of the opposite
wall.

Figure 1 shows that the average density of the liquid phase at the pore coexistence curve
is noticeably lower than the density of the bulk LJ fluid at the same temperature. This effect
becomes more pronounced at higher temperatures, i.e., at about T > 1.05, and it originates
from the depletion of the liquid density near a weakly attractive wall [27, 30, 31, 35, 36].
Indeed, a pronounced decrease of the liquid density near the wall is observed in the large
(H = 40σ) as well as in the small (H = 12σ [27]) pore (see figure 2). At high temperatures
the liquid density profile is flat in the pore interior (constant ρl(�z, τ ) in the central part of the
pore) and gradually decreases toward the pore wall, displaying only a single small oscillation
near the pore wall (figure 2, upper panel). Upon cooling, the region of density depletion shrinks
and additional density oscillations develop gradually on the density profiles. A qualitatively
similar behaviour of the density profile is seen in the liquid phase in the small pore of width
H = 12σ (figure 2, lower panel). In the small pore, however, the density depletion spreads
over the whole pore near the pore critical temperature and the flat part of the liquid density
profile is not observed.

A direct comparison of the density profiles of the saturated liquid in the small and large
pores is shown in figure 3 for some temperatures. At T = 0.80 the profiles are practically
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Figure 2. Temperature evolution of the liquid density profile along the pore coexistence curves of
the LJ fluid confined in a slitlike pore with H = 40σ (upper panel) and H = 12σ (lower panel).

identical in both pores. The density oscillations are slightly larger in the small pore. At
high temperatures, the density depletion is weaker in the small pore and the difference
between ρl(�z, τ ) in the small and the large pore becomes more pronounced with increasing
temperature.

It was shown [27, 31] that the local order parameter profiles �ρ(�z, τ ) = (ρl(�z, τ ) −
ρv(�z, τ ))/2, in the small pore of width H = 12σ with weakly attractive walls, collapse into a
single master curve when the local order parameter is normalized by the bulk order parameter,
and the distance to the pore wall is normalized by the bulk correlation length (see figure 9
in [27]). Such a universal behaviour of �ρ (�z, τ ) evidences that the drying transition, which
is expected at the bulk critical temperature, does not influence the liquid density profiles in
such a small pore. In the large pore of width H = 40σ , we do not obtain such universal
behaviour of �ρ(�z, τ ) when using the same approach, as described above [27]. We have
found that this discrepancy originates from the quite different temperature dependences of the
density profiles of the liquid phase in small and large pores.

The liquid density profiles at various temperatures can be compared, using the normalized
density ρl(�z, τ )/ρl,bulk(τ ), where ρl,bulk(τ ) is the liquid density of the bulk LJ fluid (the
values, obtained in [27], are shown in the last column of table 1). Because the intrusion of
the surface perturbation into the bulk fluid is governed by the bulk correlation length ξ , it
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Figure 3. The density profiles of the coexisting liquid phase of the LJ fluids confined in the slitlike
pores with H = 40σ (symbols) and 12σ (solid lines). The profiles for T = 1.04 and 1.12 are
shifted to larger �z by 3 and 6σ , respectively.

is reasonable to display the distance to the pore wall in terms of ξ . Taking into account the
universal temperature dependence of ξ along the coexistence curve (equation (1)), we can use
�z/τ−ν as a normalized distance variable. The normalized density profiles of the liquid in the
small and the large pore are compared in figure 4 in the temperature range from T = 1.04 up
to the highest temperature of the two-phase coexistence in the pore.

In the small pore, the normalized density profile ρl(�z, τ ) can be roughly described by
the exponential equation

ρl(�z, τ )

ρl,bulk(τ )
=

[
1 − exp

(
−�z − l0

ξ0τ−ν

)]
. (4)

The values of the parameter l0 obtained from the fits do not exceed a few tenths ofσ ,whereas the
value of the fitting parameter ξ0 is about 0.3σ , close to the value of ξ0 obtained from the master
curve of the order parameter profiles in [27]. In the large pore, the shape of the liquid density
profiles is qualitatively different from that in the small pore (figure 4). Moreover, in the large
pore the normalized profiles ρl(�z, τ )/ρl,bulk(τ ) vary with temperature non-monotonically
with the ‘lowest’ profile at T = 1.11 (see figure 4). The shape of the liquid density profiles at
any temperature cannot be fitted to the exponential equation (4).

These peculiarities of the liquid density profiles in the large pore indicate the possible
presence of some non-universal contribution to the surface behaviour. As the increase of the
pore size can be considered as an approach to a semi-infinite system, one may expect that
this peculiar behaviour is connected with the formation of a drying layer, caused by a drying
transition at the bulk critical temperature [12]. If such a drying layer appears in a liquid phase
near the surface of a large pore, the liquid density profile should be described by an interface-
like equation. The density profile at the intrinsic liquid–vapour interface, derived from the van
der Waals theory, could be described by the following equation [37, 38]:

ρl(�z, τ ) = ρl,bulk(τ ) − ρv,bulk(τ )

2
tanh

(
�z − L0

2ξ−

)
+

ρl,bulk(τ ) + ρv,bulk(τ )

2
, (5)

where L0 is the distance from the liquid–vapour interface to the solid surface. This
intrinsic interfacial profile can be affected by capillary waves, i.e., thermal fluctuations of
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Figure 4. Scaling plot for the liquid density profiles in the small pore with H = 12σ for T = 1.04,
1.05, 1.06, 1.07, 1.08, 1.09, 1.10, 1.11, 1.12 and 1.13 (upper panel) and in the large pore with
H = 40σ for T = 1.04, 1.05, 1.06, 1.07, 1.08, 1.09, 1.10, 1.11, 1.12, 1.13, 1.14, 1.15, 1.155 and
1.16 (lower panel). The highest studied temperature for each pore is shown by a thick solid line.

the interface [39]. Far from the critical point the bulk fluctuations are small and capillary
waves are the dominant factor, which determines the thickness of the interface [40]. Upon
increasing the temperature the density fluctuations in the bulk phases become more important,
yielding an intrinsic interfacial thickness proportional to the increasing bulk correlation length,
as described by equation (5). Since the expected interface is close to the wall, the capillary
waves can be suppressed by a long-range fluid–surface interaction.

We have found that the liquid density profile in the large pore can be described by
equation (5) at low temperatures, when the density of the bulk vapour is close to zero. However,
equation (5) fails to fit the liquid density profiles at high temperatures, because the value of the
density near the pore wall is even lower than the bulk vapour density at the same temperature.
This result is consistent with the theoretical expectations that a vapour layer never appears
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Table 1. The values of the fitting parameters ξ− , L0 and ρl,bulk in equation (6) when fitted
to the liquid density profiles in the large pore of width H = 40σ at different temperatures T
(reduced temperatures τ ). Uncertainties of the fitting parameters correspond to the confidence
level 95%. The values of ρ0

l,bulk were obtained by direct GEMC simulations of the liquid–vapour
equilibrium [27].

ξ−/σ L0/σ ρl,bulk

T τ ±0.01 ±0.01 ±0.0005 ρ0
l,bulk

0.75 0.368 0.19 0.92 0.7935 0.793
0.80 0.326 0.24 0.89 0.7703 0.769
0.85 0.284 0.35 0.83 0.7424 0.743
0.90 0.242 0.56 0.84 0.7161 0.717
0.93 0.217 0.62 0.89 0.6996 0.697
0.95 0.200 0.69 0.99 0.6880 0.684
0.96 0.192 0.66 0.92 0.6826 0.678
0.97 0.183 0.75 1.05 0.6764 0.672
0.98 0.175 0.67 0.95 0.6649 0.665
0.99 0.166 0.81 1.14 0.6634 0.659
1.00 0.158 0.87 1.29 0.6560 0.651
1.01 0.150 0.82 1.17 0.6484 0.644
1.02 0.141 0.82 1.23 0.6362 0.637
1.03 0.133 0.89 1.31 0.6328 0.628
1.04 0.124 0.87 1.31 0.6247 0.622
1.05 0.116 0.95 1.40 0.6164 0.613
1.06 0.107 1.10 1.57 0.6103 0.605
1.07 0.099 1.16 1.73 0.5920 0.597
1.08 0.091 1.16 1.84 0.5830 0.590
1.09 0.082 1.31 1.23 0.5760 0.576
1.10 0.074 1.47 2.26 0.5630 0.568
1.11 0.065 1.57 2.69 0.5550 0.558
1.12 0.057 1.68 2.71 0.5420 0.547
1.13 0.049 1.95 2.87 0.5210 0.529
1.14 0.040 2.14 3.18 0.5140 0.524
1.15 0.032 2.40 3.28 0.5036 0.502
1.155 0.027 2.91 3.69 0.5065 0.495
1.16 0.023 3.32 3.75 0.493 0.488

near a surface with long-range fluid–surface interaction [15, 16]. So, it is more reasonable
to suggest not a vapour but a drying layer near the surface. Since the density distribution in
a drying layer is unknown, we fitted the liquid density profiles to equation (5) with ρv,bulk as
a free parameter ρ∗. Such an approach provides a satisfactory description of the simulated
profiles apart from the first layer of about σ width, where a density oscillation, caused by
fluid–surface interaction potential, is noticeable even at supercritical temperatures. The values
of ρ∗ obtained from the fits were found close to zero for all studied temperatures. An example
of such a fit with ρ∗ = 0 for T = 1.10 is shown in figure 5. So, we propose the following
equation to describe the liquid density profile ρl(�z, τ ) near a weakly attractive surface:

ρl(�z, τ ) = ρl,bulk(τ )

2

[
tanh

(
�z − L0

2ξ−

)
+ 1

]
. (6)

There are three parameters in equation (6): L0, the distance of the inflection point of the such
defined liquid–drying layer interface from the surface (thickness of the drying layer), ξ−, the
bulk correlation length at the liquid–vapour coexistence curve, and ρl,bulk (τ ), the density of
the bulk liquid. The first density oscillation (which extends over about 1σ near the surface)
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Figure 5. Liquid density profile in the large pore with H = 40σ at T = 1.10 (circles) and the
fit to equation (6) with the parameters shown in table 1 (solid line) and to equation (4) (dotted
line). Coordinates of the inflection points are shown by dashed lines. The inset gives a sectoral
magnification. The value ρl,bulk found from the fit is shown by the horizontal line in the inset.

is caused by the localization of the molecules in the well of the fluid–wall potential. Since
it strongly deviates from the smooth density profile outside the first layer, it is reasonable to
exclude the first layer from the fits. The values of the parameters obtained from the fits of
equation (6) to the simulated liquid density profiles are shown in table 1.

The temperature dependences of the correlation length ξ− and of the thickness of the drying
layer L0, obtained from these fits, are shown in figure 6 (solid circles). The correlation length
shows a temperature dependence, which is rather close to the simple power law described
by equation (1) with an amplitude ξ0 = 0.28σ (figure 6, lower panel, dashed line). Such an
amplitude of the correlation length agrees well with the value ξ0 = 0.3σ , obtained previously
from the master curve of the order parameter of an LJ fluid in a narrow pore [27].

Another estimate of the amplitude of the correlation length can be obtained based on the
exponential decay of the perturbation caused by the surface: far from the surface the deviation
of the local density from the bulk value is governed by the bulk correlation length and should
follow equation (4). Thus, the progressive exclusion of an increasing part of the density profile
near the surface from the fit should show a convergence of the fitting parameters, including
ξ−. The values of ξ− obtained from fits of equation (4) to liquid density profiles, which extend
from the pore centre to various distances from the surface �zcut, are shown in figure 7 (lower
panel) for two temperatures. A clear convergence of the fitted values ξ− is observed, when the
fitted part of the density profile does not approach the pore wall closer than 6σ at T = 1.15
and 8σ at T = 1.16. These converged values of ξ− are remarkably close to the values of ξ−
obtained from the fit of the data to equation (6), shown by dashed lines (figure 7).

The values ρl,bulk obtained from fits of ρl(�z, τ ) to the interfacial equation (6) (table 1)
are almost equal to the liquid densities in the pore centre, obtained by fits of the data near
the pore centre to the exponential equation (4) (see solid lines in figure 7). The values ρl,bulk

obtained from these fits agree very well with the bulk liquid densities obtained by direct Gibbs
ensemble MC simulations of the liquid–vapour equilibrium [27], which are also presented in
table 1.
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Figure 6. Temperature dependence of the thickness of the drying layer L0 and correlation length
ξ− , obtained from the fits of equation (6) to the part of the liquid density profile ρl (�z, τ ), which
extends from the pore centre to various distances �zcut from the surface: �zcut = 0σ (squares),
1σ (circles), 2σ (triangles) and 3σ (stars). A logarithmic behaviour described by equation (7) with
const = −0.05σ and −0.85σ is shown by upper and lower solid lines, respectively. The power
law (1) with ξ0 = 0.28σ is shown by a dashed line.

Next, we test the sensitivity of the fitting parameters in the interfacial equation (6) from
the portion of the liquid density profile used for the fits. For this purposes we fitted equation (6)
to the part of ρl(�z, τ ), which extends from the pore centre to some distances �zcut from the
surface. The fitting parameter ρl,bulk was found to be practically independent of the choice of
the fitting interval. The values of the correlation length ξ−, obtained from the fits, depend on
the choice of �zcut (from 0 to 3σ ) only at T � 0.90 or τ � 0.24 (see figure 6, lower panel)
due to the strong density oscillations near the surface at low temperatures. At T > 0.90 the
fitting results for the correlation length ξ− are not sensitive to �zcut.

The change of the thickness of the drying layer L0 with temperature is shown in the upper
panel of figure 6. At the lowest temperatures (T � 0.90 or τ � 0.24) the fitted value of L0

is determined by the choice of �zcut, namely L0 ≈ �zcut. This correlation is clearly imposed
by the strong density oscillations near the surface. Thus, if the thickness of a drying layer
does not exceed 1σ , meaningful value of L0 cannot be determined from the fits. At higher
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Figure 7. Variation of the fitting parameters ρl,bulk and ξ− at T = 1.15 (triangles) and T = 1.16
(circles), when equation (4) is fitted to those parts of the liquid density profile ρl(�z, τ ) which
extend from the pore centre to various distances �zcut from the surface. The values of the liquid
density at the bulk coexistence curve are shown by solid lines (upper panel). The values of the
bulk correlation length ξ− , obtained from the fit of equation (6) to ρl(�z, τ ) (table 1), are shown
by dashed lines (lower panel).

temperatures, L0 does not depend noticeably on the choice of �zcut. Two temperature regions
could be distinguished in the temperature dependence of L0 at T > 0.90. In the temperature
interval from T = 1.11 to 1.16 (0.023 < τ < 0.065) the thickness of a drying layer L0 clearly
follows the logarithmic dependence

L0 = ln(τ−1) + const (7)

with const ≈ −0.05σ (see figure 6, upper panel, upper solid line). A quite similar logarithmic
temperature dependence of L0 is observed in the low-temperature interval from T = 0.85
to 1.06 (0.11 < τ < 0.28), but with another value const ≈ −0.85σ . There is a crossover
between two kinds of logarithmic behaviour in the temperature interval from T = 1.07 to 1.10
(0.074 < τ < 0.10). Note that the observed logarithmic temperature dependence of L0 is
similar to that predicted for the divergence of the thickness of the wetting layer in the case of
a critical wetting transition [12]. We have also fitted the obtained temperature dependence of
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Figure 8. Scaling plot of the liquid density profiles ρl(�z, τ ) in the large pore H = 40σ for
the same temperatures as in figure 4. The parameters ρl,bulk and L0 were obtained from fits of
equation (6) to density profiles ρl(�z, τ ), which were cut at the distance 1.0σ from the surface
(table 1). For T = 1.16 the value ρl,bulk from the bulk coexistence curve was used.

L0 to the power law

L0 ∼ τ−x , (8)

as the thickness of a drying (wetting) layer is expected to follow a power-law behaviour in some
model cases [12]. The value of the exponent x obtained from the fit of L0 in the temperature
interval 1.11 � T � 1.16 (0.023 � τ � 0.065) was found to be close to zero. This also
supports a logarithmic divergence of L0 when approaching the critical temperature.

So, equation (6) allows the description of the liquid density profiles in a wide temperature
range using two properties of the bulk fluid (ρl,bulk and ξ−) and the thickness of the drying layer
L0. The degree of the universality of the liquid density profiles can be illustrated by a master
curve, which is essentially improved in comparison with figure 4, where the presence of a
drying layer was neglected. Now, we introduce a normalized length scale, which is measured
from the liquid–drying layer interface, as (�z − L0)/ξ−. Using the fitting parameters L0 and
ρl,bulk from table 1, the liquid density profiles collapse on a single master curve in a wide
temperature range 1.04 < T < Tc or 0 < τ < 0.12 (see figure 8). The dashed line in figure 8
represents the interfacial equation (6) in normalized coordinates. This means that equation (6)
allows a perfect description of the liquid density profiles in the whole temperature range, where
the drying layer can be clearly detected. In the temperature range above T = 1.11 (τ = 0.065),
where the thickness of the drying layer follows equation (7) (see figure 6), ρl(�z, τ ) can be
predicted if the bulk density, the bulk correlation length and the value of const in equation (7)
are known. Note that the latter value can be estimated from a single density profile.

We also test the possibility to describe the density profiles of the liquid in the small pore
with H = 12σ by the interfacial equation (6). The obtained fitting values of L0 are about 1σ

in the whole temperature range (figure 9). The fitting values of L0 in the small and large pores
coincide at low temperatures (T < 0.90 or τ > 0.24), where they are strongly influenced by
the density oscillations and, therefore, are meaningless. Insofar as a thickness of the drying
layer below 1σ cannot be detected from the fits, the real thickness of the drying layer can be
essentially lower. Thus, the fitting values of L0 for the small pore with H = 12σ , shown in
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Figure 9. Temperature dependence of the thickness of the drying layer L0 and of the correlation
length ξ−, obtained from fits of the liquid density profiles ρl(�z, τ ) cut at the distance 1σ from
the surface for large (solid circles) and small (open circles) pores. The solid and dot–dashed lines
represent equation (1) with ξ0 = 0.28σ (this paper) and ξ0 = 0.30σ [27], respectively. The dashed
line corresponds to equation (7) with const = −0.05σ .

figure 9, cannot be considered as an indication of a drying layer in this pore even near the pore
critical temperature. Obviously, the fluid layer near the surface, highly localized in the well
of a fluid–wall potential, cannot be considered as a drying layer. This observation agrees with
a previous analysis of the local order parameter in the same pore [27], which indicated the
absence of a drying layer.

The values of ξ− found from the fits of ρl (�z, τ ) in the small pore with equation (6) are
noticeably smaller than ξ− obtained from the fits of the order parameter in the same pore [27]
and ξ− in the large pore (figure 9). So, the liquid density profiles in the small pore cannot be
described correctly by equation (6): the effective thickness of the drying layer is ultimately
overestimated in such a pore, resulting consequently in an underestimation of the value of the
correlation length.

The drying layer, clearly seen in a large pore with H = 40σ , disappears in a small
pore with H = 12σ and the same fluid–surface potential. This agrees with the theoretical
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Figure 10. Liquid density profiles ρl (�z, τ ) at T = 1.10 in pores of various width with identical
fluid–surface interaction potential, described by equation (2). The liquid density of the bulk fluid
is shown by a horizontal line.

expectation of strong sensitivity of the thickness of the drying layer to the chemical potential,
which is shifted due to the confinement in the pore [12]. One may expect that the thickness
of a drying layer L0 should continuously increase with increasing pore size and achieve some
saturation value L0,inf in a semi-infinite system. To check this expectation we have simulated
liquid–vapour coexistence of the LJ fluid in several pores of various sizes with the same
fluid–surface interaction potential at T = 1.10. The obtained liquid density profiles shown in
figure 10 indicate that the density depletion becomes more pronounced in larger pores. The fits
of ρl(�z, τ ) with equation (6) allow an estimation of the parameters L0 and ξ− in all studied
pores, and their dependences on the pore size are presented in figure 11. Note that at this
temperature, L0 exceeds 1σ and the drying layer is indeed detectable in all pores except the
smallest one with H = 12σ . As the shift �µ of the chemical potential of the phase transition
in a pore relatively to a semi-infinite system is proportional to 1/H [41], it is reasonable
to consider the dependence of L0 and ξ− on 1/H . Both parameters show essentially a linear
dependence (see figure 11). Extrapolation of these linear dependences to a semi-infinite system
(1/H → 0) gives the values L0,inf = (2.67 ± 0.15)σ and ξ−,inf = (1.65 ± 0.04)σ . Assuming
that a drying layer effectively decreases the pore size to H − 2L0, the dependences shown in
figure 11 become nonlinear and their extrapolation to semi-infinite systems by second-order
polynomial fit gives L0,inf = (2.79 ± 0.47)σ and ξ−,inf = (1.73 ± 0.09)σ . The values of ξ−,
extrapolated to a semi-infinite system, correspond to an amplitude of the correlation length
ξ0 ≈ 0.32–0.33σ . This value is about 15% higher than the value ξ0 = 0.28σ obtained in the
pore with H = 40σ .

Finally, we have tested the general theoretical expectation that the formation of a drying
layer could be suppressed by a strengthening fluid–surface interaction or by extending its
attractive range. For this purpose we have simulated liquid–vapour coexistence and density
profiles of the coexisting phases in the large pores (H = 40σ ) at T = 1.05, 1.10 and 1.15
with stronger interaction potential Uw2(z) and with the slower decaying potential Uw3(z) (see
section 2 for more details). The obtained density profiles at T = 1.10 are compared in
figure 12. Evidently, the drying layer is strongly influenced by the interaction potential.
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Figure 11. Dependence of the thickness of the drying layer L0 and the correlation length ξ−,
obtained from fits of the liquid density profile ρl(�z, τ ) with equation (6), on the inverse pore
width 1/H (circles). Linear fits of the data are shown by lines.

Namely, strengthening of the fluid–surface potential by about 33% causes a shrinking of a
drying layer at T = 1.10 from 2.26σ to 1.76σ , i.e., by about 20%. At T = 1.05 the effective
thickness of the drying layer is suppressed to about 1σ . An extension of the attractive range
of the fluid–surface potential from ∼r−4 to ∼r−3 has an even stronger effect: the drying layer
almost disappears (L0 < 1.4σ at T = 1.10).

Starting from the inflection point, the shape of the liquid density profiles remains highly
universal for all considered fluid–surface potentials, as it is determined mainly by the bulk
correlation length (see lower panel in figure 12). Note that the details of the long-range
attractive tail of a fluid–surface potential can produce some minor deviations of ρl(�z, τ )

from the universal shape, described by equation (6). An example of such deviations is also
shown in the inset of figure 5.

Using the obtained density profiles of the liquid,we analysed the surface excess desorption,
which describes a deficit of mass per unit surface area caused by depletion of the liquid density
near the surface. The total excess desorption �tot contains two contributions: desorption due
to the presence of a drying layer �L and desorption due to the density depletion �ξ , governed
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Figure 12. Upper panel: liquid density profiles ρl(�z, τ ) at T = 1.10 (circles) in pores of width
H = 40σ with fluid–wall interaction potentials Uw1(z) (circles), Uw2(z) (triangles) and Uw3(z)
(squares). Lower panel: the same profiles shown as a function of the distance to the inflection
points (see text).

by the correlation length. We calculated these two contributions by numerical integration of
ρl (�z, τ ) from the surface to the inflection point (�L ) and from the inflection point to the pore
centre (�ξ ). The total excess desorption �tot and its two contributions are shown in figure 13
as functions of the reduced temperature. For a semi-infinite system the excess desorption �ξ

can be simply calculated by integration of equation (6) for the liquid–drying layer interface
from the inflection point to infinity:

�ξ (τ ) = ρl,bulkξ− ln 2. (9)

This part of the total desorption behaves like ∼ τ−ν at any temperature and strongly diverges
when approaching the critical point. The contribution �L can be obtained in a similar way,
using integration of equation (6) for the liquid–drying layer interface from the pore wall to the
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Figure 13. Temperature dependence of the excess desorption of the liquid in the large pore: total
excess desorption �tot (solid circles) and its contributions due to the drying layer �L (squares) and
due to the increase of the correlation length �ξ (triangles). Total desorption in the small pore is
shown by dashed line.

inflection point:

�L (τ ) = ρl,bulk
[
L0 + 2ξ− ln (cosh(L0/2ξ−))

] /
2. (10)

We analysed the ability of equations (9) and (10) to describe the simulation results of
the excess desorption. The excess desorption �ξ depends on the bulk fluid properties only.
Knowing the temperature behaviour of the bulk liquid density ρl,bulk along the coexistence
curve [27] and using the asymptotic equation (1) for the bulk correlation length with amplitude
ξ0 = 0.28σ , we can directly obtain the temperature dependence of�ξ from equation (9) (dashed
line in figure 14). Good agreement of the simulated values of �ξ with equation (9) is observed
in the whole temperature range studied. Deviations at low and high temperatures should be
attributed to deviations of the correlation length from the asymptotic equation (1) (see figure 6).

The excess desorption �L , described by equation (10), apart from the bulk parameters
ρl,bulk and ξ−, contains also the parameter L0, determined by the fluid–surface interaction. We
obtain meaningful estimates of L0 for the temperatures, where the thickness of the drying layer
L0 exceeds about 1σ . In this range L0 follows equation (7) (see figure 6) and therefore the
contribution �L varies roughly as ln (τ−1)(ρl,bulk)/2, i.e., shows logarithmic divergence when
approaching Tc. The excess desorption �L described by equation (10), and the total excess
desorption �tot = �ξ + �L , described by equations (9) and (10), are shown in figure 14 by
dashed–dot and solid lines, respectively. Obviously, good agreement of the simulated values
of �L with equation (10) is observed in the range where the temperature dependence of L0 is
known.

In a wide temperature range the contribution from the drying layer to the excess desorption
is dominant (figure 13). However, the contributions �L and �ξ approach each other with
increasing temperature and practically coincide at τ ≈ 0.02 (figure 14). The contribution �ξ

obviously should dominate �L at higher temperatures, as the former diverges as τ−ν , whereas
the latter diverges logarithmically only.
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Figure 14. Temperature dependence of the excess desorption of the liquid in double logarithmic
scale: the symbols are the same as in figure 13. Desorption �ξ , �L described by equations (9)
and (10) and �tot = �ξ + �L are shown by dashed, dashed–dot and solid lines, respectively.

4. Discussion

We have studied the temperature evolution of the density profiles of a liquid along the liquid–
vapour coexistence curve near a weakly attractive surface. To approach the fluid behaviour
in a semi-infinite system, the liquid–vapour coexistence curve of an LJ fluid was simulated
in an extremely large slitlike pore with H = 40σ . Additionally, at some temperatures we
simulated the liquid–vapour coexistence in pores of various sizes. Strong depletion of the
liquid density near a weakly attractive pore wall is observed. The shape of the liquid density
profiles evidences the formation of a drying (not a vapour) layer near the pore wall with
increasing temperature. This drying layer can be detected at T > 1.0 (τ < 0.15), when
the distance between the inflection point of the density profile and the pore wall exceeds at
least one molecular diameter. We propose to describe the liquid density profiles near weakly
attractive surfaces by equation (6), which assumes an interface between the liquid phase and
the drying layer and allows estimation of the bulk correlation length ξ− and the thickness of
the drying layer L0.

The fits of ρl(�z, τ ) with the interfacial-like equation (6) and with the exponential
equation (4) which describes the decay to the bulk density far from the surface give similar
values of the amplitude of the correlation length ξ0 ≈ 0.28σ . This evidences a self-consistency
of the proposed treatment of the liquid density profile and also indicates a negligible effect
of the capillary waves on the studied interface between the liquid and the drying layer. This
conclusion corroborates general theoretical arguments, concerning the influence of a long-
range fluid–surface potential on the interface between the vapour and the wetting layer [12].

The thickness of the drying layer L0 follows a logarithmic temperature dependence (7),
starting from T ≈ 1.1 (i.e., at τ < 0.074). Such a logarithmic divergence with approaching
wetting (drying) temperature is expected for critical wetting (drying) [12]. This result is
consistent with the existence of a second-order drying transition at the bulk critical temperature
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Figure 15. Temperature dependence of the thickness of the drying layer L0 (solid circles) and
correlation length ξ− (open circles), obtained from fits of the liquid density profile ρl (�z, τ ),
which extend from the pore centre to the distance 1σ from the surface. The logarithmic law
described by equation (7) with const = −0.05σ is shown by a dashed line. The power law (1) with
ξ0 = 0.28σ is shown by a solid line. The temperature where L0 ≈ ξ− is marked by a star.

for long-range fluid–surface interactions [15] and with experimental evidences for the absence
of a drying transition at subcritical temperatures even in a system with extremely weak fluid–
surface interaction [3, 25], similar to the one used in our studies. Additionally, we have shown
how the thickness L0 of the drying layer can be strongly suppressed by strengthening of the
fluid–surface interaction, extension of its attractive range and by confinement.

In the temperature range of our simulation studies, the correlation length ξ− does not
exceed the thickness of the drying layer L0 (see table 1 and figure 15). However, the
divergence of the correlation length ξ− is much stronger than the logarithmic-like divergence
of L0 when approaching the critical point. Therefore, the interface between liquid and drying
layer approaches the wall with increasing temperature, if the distance is measured in terms
of the bulk correlation length. Assuming validity of equations (7) and (1) also closer to the
critical point, the characteristic temperature, where ξ− ≈ L0, can be expected at τ ≈ 0.01
(see star in figure 15). Above this temperature, the effective ‘thickness’ of the total region of
density depletion near the surface should diverge asymptotically as the correlation length. This
corroborates the theoretical expectations for the thickness of the wetting (drying) layer, when
the critical wetting (drying) transition occurs at the bulk critical temperature [16]. Experiments
with fluid mixtures indicate that the partial wetting layer decays exponentially with distance
from the surface and its effective ‘thickness’ is proportional to the bulk correlation length
ξ− [42, 43].

We found that the total excess desorption due to the depletion of the liquid density near
a weakly attractive surface should diverge as the bulk correlation length ξ− ∼ τ−ν = τ−0.63

when approaching the critical temperature. This strong divergence, described by equation (9),
originates from that part of the liquid density profile which extends from the bulk liquid to
the inflection point of the liquid–drying layer interface. Slight variations of the fluid–surface
potential do not affect noticeably this part of the profiles (see figure 12, lower panel) and,
accordingly, the value of �ξ , whereas the thickness of the drying layer is highly sensitive to
the details of the fluid–surface potential (figure 12, upper panel).
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The observed divergence of the excess desorption is stronger than � ∼ τβ−ν = τ−0.305,
expected from the theory of critical adsorption [44]. We do not see the possibility of a crossover
of � to the power law of critical adsorption with further approaching the critical temperature,
as the inflection point of the liquid–drying layer interface asymptotically approaches the
value ρc/2. Such a crossover could be possible only if the drying layer transforms into a
vapour layer and, accordingly, the density at the inflection point of the liquid–vapour interface
approaches ρc with increasing temperature. However, this scenario is forbidden for systems
with long-range fluid–surface interaction, where vapour layers do not appear below the critical
temperature [15, 16, 24]. Note that recent experimental studies of the adsorption in binary
mixtures indicate that at subcritical temperatures �diverges more strongly than ∼τβ−ν [43, 45].
Such behaviour may have the same origin as that observed in our computer simulations.
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