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Abstract. Density profiles of a LJ vapor near a weakly attractive surface with long-range fluid wall potential
was studied along the pore coexistence curve. There are two localized density maxima near the pore wall:
the first one is caused by localization of the molecules in the minimum of the fluid-wall potential, and
the second one reflects adsorption of molecules at the first layer at higher densities. In addition, a third,
weak density maximum is observed close to the critical temperature due to the competition between the
long-range attractive tail of the fluid-wall potential and the effect of missing neighbors. This maximum
separates the region of a gradual density depletion toward the surface due to the missing neighbor effect
and the adsorption region further from the surface, where the density gradually increases toward the
surface due to the attractive fluid-wall potential. When approaching the bulk critical temperature, this
maximum moves away from the surface due to the divergence of the bulk correlation length. Applicability
of various equations to describe the vapor density profiles is examined. Excess adsorption of vapor at low
temperatures turns into excess depletion at higher temperatures. The crossover temperature increases with
increasing pore size and strengthening fluid-wall interaction. The problems of the theory of the surface
critical behavior of Ising models in a case of a non vanishing surface field and its mapping on a fluid is
discussed.

PACS. 05.70.Jk Critical point phenomena – 05.70.Np Interface and surface thermodynamics – 64.70.Fx
Liquid-vapor transitions – 68.43.-h Chemisorption/physisorption: adsorbates on surfaces

1 Introduction

A fluid near a solid boundary becomes inhomogeneous and
its various properties differ essentially from the bulk case.
Knowledge of a spatial fluid density distribution is nec-
essary to characterize the local structural and dynamic
properties of inhomogeneous fluid. Besides, this is impor-
tant for understanding the phenomena directly related to
fluid inhomogeneity, such as attraction between extended
solvophobic surfaces, slipping flow, adsorption in porous
media, etc. Search for the laws which are able to pre-
dict density distribution near various solid boundaries at
various thermodynamic conditions is therefore important
challenge for physics of fluids. These laws should account
for the location of the thermodynamic state point of a
fluid in respect to the liquid-vapor phase transition and
its critical point.

Near a smooth surface, inhomogeneity of a fluid may
be characterized by the local density profile ρ(z ), where
z is the distance to the surface. The local density distri-
bution is determined by the competition of two effects,
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which are caused by a solid wall. The first effect is caused
by the unavoidable weakening of the potential energy of
molecules due to the lower number of nearest neighbors of
fluid molecules near the wall (the so-called effect of missing
neighbors). This is the single effect of the solid boundary
in the simplest cases of a hard-wall or free boundary condi-
tions. The second effect of the surface is related to the at-
tractive interaction Uw between the fluid molecules and a
solid wall. The theory of fluids near a boundary is based on
the minimization of the grand potential Ω (Helmholtz free
energy) of the inhomogeneous fluid, providing an equality
of the chemical potential everywhere in the system [1].
The equilibrium density distribution satisfies

∂Ω

∂ρ(r)
= 0. (1)

A fruitful approach to solve this problem is the density
functional theory, where the free energy is considered as
an unique functional of the density distribution [2]. In this
case the equilibrium distribution of the local density is a
solution of an integro-differential equation, which, how-
ever, can not be solved analytically even for simple ge-
ometries. Therefore, the equilibrium density profiles in all
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modifications of the density functional theory can be ob-
tained only numerically. Note, that the intrinsic mean-field
character of density functional theories limits their abil-
ity to reproduce fluid properties when approaching the
critical point, where long-range correlations become im-
portant.

Alternatively, equilibrium density profiles of fluids can
be obtained from computer simulations. Such computer
experiment can provide valuable data even near the criti-
cal point, when the effect of the finite size of the simulation
system is taken into account properly [3]. Even sophis-
ticated experimental techniques can provide only an ap-
proximate description of the fluid density distribution near
a solid boundary (see, for example, Refs. [4–7]). Therefore,
computer simulations remain currently the main source
of “experimental” data, which can be used to test avail-
able theories and/or to develop empirical equations able
to predict the density profile near any boundary at any
thermodynamic state.

The theory of the critical phenomena provides an ex-
act and highly universal description of the thermody-
namic properties of a bulk fluid in proximity of the criti-
cal point [8,9]. For some of these properties, such as the
temperature dependence of the densities along the liquid-
vapor coexistence curve, the critical contribution remains
dominant even far away from the critical point [10,11].
Similar to bulk systems, the theory of the surface critical
behavior in Ising magnets provides a highly universal de-
scription of the systems near the boundary [12]. Recently,
it was shown how the behavior of a confined fluid can
be mapped on the surface critical behavior of Ising mag-
nets [10,11,13,14]. Such a mapping should provide scal-
ing equations for the density profiles in various thermody-
namic states. In particular, the order parameter profiles
∆ρ(z, τ) (difference between the local densities ρl(z, τ)
and ρv(z, τ) of the coexisting liquid and vapor phases)
near a weakly attractive surface can be mapped on the
surface universality class of an ordinary transition. The
order parameter profiles in a wide range of temperatures,
starting from the vicinity of the critical point, can be de-
scribe by a universal exponential equation, which contains
only two bulk properties: density and correlation length.

A surface phase transition (wetting or drying) [15] in-
fluences the density profile in one of the coexisting phases
only. This essentially complicates the fluid density profile
in that phase, which undergoes surface transition. An at-
tractive long-range fluid-wall interaction suppresses a dry-
ing transition up to the critical temperature. In this case
a drying (not vapor) layer develops in the liquid phase
near the wall with increasing temperature [16]. This dry-
ing layer is strongly sensitive to the confinement and can
almost completely vanish in small pores [10,14]. Note, that
the liquid density profile can be described in a universal
way even in the presence of a drying layer [16]. In the
present paper we study the density profile of a wetting
phase, which does not undergo a surface phase transition,
namely vapor near a weakly attractive wall.

It is reasonable to map density profiles of a wetting
phase (as well as of a supercritical fluid) onto magnetiza-

tion profiles of semiinfinite Ising magnets. In the case of a
free surface (surface field h1 = 0), the magnetization pro-
file m(z) is flat and equal to zero at T ≥ Tc. In the case
of a strong (infinite) surface field (h1 → ∞), the missing
neighbor effect can be neglected and the short-distance
behavior of magnetization follows the power law [17]:

m(z) ∼ z−
β
ν . (2)

where ν ≈ 0.63 and β ≈ 0.326 are the bulk critical expo-
nents [18]. So, increase of magnetization toward the sur-
face is governed by the exponent −β/ν ≈ −0.52 for the 3D
Ising model. At T = Tc when the bulk correlation length
ξ = ∞, the power law (2) should describe a complete den-
sity profile. At T ≥ Tc, equation (2) is valid for distances
z � ξ, whereas for z � ξ the local magnetization m(z)
approaches the value of the bulk magnetization mb = 0
exponentially:

m(z) − mb ∼ e−z/ξ. (3)

Various empirical equations, which incorporate both long-
distance and short-distance behaviors were proposed for
T > Tc (see [19–21]).

If the surface field is not very strong, a non-
monotonous magnetization profile should be ex-
pected [22,23]. The missing neighbor effect yields a
steep decrease of the magnetization toward the surface
and the short-distance behavior of magnetization T ≥ Tc

should be [23]:

m(z) ∼ zk, (4)

where k ≈ 0.21. When moving away from the surface, the
increase of m(z) described by equation (4) is expected up
to the distance zmax, where the switch to the magnetiza-
tion decay, described by equation (2) occurs. The value
zmax should increase with vanishing surface field and can
extend up to a distance larger than ξ [24]. In the case
of such a weak surface field, the dependence (2) is not
observed. It is important, that in case of a weak surface
field, a new relevant length scale zmax appears in addition
to the correlation length and pore size.

The magnetization profiles at subcritical temperatures
T ≤ Tc were much less studied. It was established, that in
the case of a zero surface field (h1 = 0) in both coexisting
phases the magnetization decreases when approaching the
surface and at short distances m(z) should obey a power
law [17,25]:

m(z) ∼ z
β1−β

ν , (5)

where and β1 ≈ 0.82 [26] is the surface critical exponent,
which describes the temperature dependence of the order
parameter below the critical temperature Tc [12]. Thus,
the decrease of magnetization toward the surface, which
is caused solely by the missing neighbor effect, should be
governed by the exponent (β1−β)/ν ≈ 0.78. At distances
larger than ξ, the local magnetization increases and ap-
proaches the bulk magnetization exponentially (Eq. (3)).
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Fig. 1. Sketch of the magnetization profiles m(z) of an Ising
magnet near a boundary at T = Tc and at T � Tc. Zero
surface field h1 = 0: dashed lines. Non-zero surface field h1 �=
0 attracting upward spins: solid and dot-dashed lines.

In the case of a strong surface field, a similar shape
of the magnetization profiles below and above the critical
temperature was predicted [20,21]. This theory takes into
account a response to the surface field (quite similar above
and below Tc), but neglects spontaneous magnetization
below Tc near the surface [10,14]. Therefore, the theory
given in references [20,21] could not be applied for finite
surface fields at T < Tc.

The magnetization profiles in two coexisting phases
below Tc in the presence of a weak surface field have not
been studied yet even at the mean-field level. General ar-
guments allow to expect a nonmonotonous magnetization
profile not only above but also below the critical temper-
ature. At subcritical temperatures, which exceed the wet-
ting temperature there is a single magnetization profile
of the wetting phase, since only one of the phases (wet-
ting phase) remains near the surface. Very close to Tc, it
should look like m(z) at T = Tc (dot-dashed line in Fig. 1),
however, with an exponential decay of magnetization at
large distances. Below the wetting transition temperature
there are two local magnetization profiles near the surface
for any surface field (dashed and solid lines in Fig. 1). A
maximum of m(z) can be expected in the wetting phase,
where the missing neighbor effect and the surface field
favor opposite trends of m(z) near the surface. This max-
imum separates the region, where the magnetization de-
creases steeply toward the surface due to effect of missing
neighbors, and the “adsorption” region far from the sur-
face, where magnetization gradually increases toward the
surface due to the surface field.

Mapping of the magnetization profiles of Ising magnets
onto the density profiles in fluids is not obvious, as even
mapping of the surface critical behavior and the order pa-
rameter of the phase transition near the surface in these
systems is an area of debates [10,14]. Additional complica-
tions arise from the long-range fluid-wall attraction, which
is typical for real systems. Studies of the fluid density
profiles near various surfaces along the liquid-vapor phase
transition line and in the supercritical region should clar-
ify these questions.

Recently, a maximum of the density profiles of a one
component fluid was reported for T = Tc [27]. In this pa-
per a zero surface field in an Ising model was assumed
to be equivalent to some nonzero value of an attractive
fluid-wall potential, corresponding to the so-called ‘neu-
tral wall’. Such a mapping, however, does not explain the
monotonous depletion of the density toward the surface,
when the fluid-wall potential is weaker than the “neu-
tral wall” value. Note, that such asymmetry seems to
be absent in binary mixtures at the liquid-liquid critical
point [29].

In the present paper we study the density profiles ρ(z)
in the vapor phase of a LJ fluid along the pore coexis-
tence curve from the freezing to the critical temperature.
Near a weakly attractive surface, liquid phase undergoes
a drying transition and density profiles are distorted by
the presence of a drying layer [16]. Saturated vapor near
a weakly attractive surface is a “wetting” phase and does
not undergo the surface phase transition. We have tested
the ability of the theory of the surface critical behavior to
describe evolution of the vapor density profile along the
liquid-vapor coexistence curve. For completeness, the den-
sity profiles in various regimes far from the critical point
are characterized. The effects of the confinement and the
fluid-wall interaction potential on the vapor density pro-
files are discussed.

2 Simulated systems

We studied the Lenard-Jones (LJ) fluid, having an inter-
particle interactions of the form:

ULJ(r) = 4ε
[
(σ/r)12 − (σ/r)6

]
, (6)

where ε measures the well depth of the potential, while σ
sets the length scale. The potential was spherically trun-
cated at a radius 2.5σ and left unshifted. No long-range
corrections were applied to account for effects of the trun-
cation. The density ρ used in the present paper is the
number density scaled by σ3, while T is the temperature
scaled by ε/kB, where kB is Boltzmann‘s constant. Liquid
and vapor densities of this fluid at the bulk coexistence
curve from freezing temperature to the critical tempera-
ture were obtained in our previous paper [10].

To study the behavior of the two coexisting phases near
a surface, the LJ fluid was confined in a slitlike pore with
structureless walls. Each wall interacts with the particles
of the fluid via a long-range potential comprising a single
plane of LJ molecules:

Uw(z) = 4ε f
[
0.4 (σ/z)10 − (σ/z)4

]
, (7)

where z measures the distance to the wall and the parame-
ter f determines the strength of the fluid-wall interaction.
No truncation was applied to Uw(z). In the present pa-
per we report mainly the results obtained for a weakly
attractive (solvophobic) surface with a well-depth of the
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fluid-wall interaction Uw1(z) = Uw(z, f = 0.3), which pro-
vides about 70% of the well-depth of the fluid-fluid inter-
action. This surface is “strongly solvophobic” and simple
estimation [28] gives a contact angle of about 145◦ for a
liquid phase at low temperatures. To explore the effect of
the strength of the fluid-wall potential on the vapor den-
sity profile we also simulated the liquid-vapor coexistence
in a pore with slightly stronger fluid-surface interaction
Uw2(z) = Uw(z, f = 0.4). Additionally, the effect of the
range of the fluid-wall interaction was explored by sim-
ulation of a system with a slower decay of the fluid-wall
potential Uw3(z), which follows from the integration over
all interactions with LJ molecules in a half-space and can
be described by the equation:

Uw3(z) = 4εf ∗
[
(σ∗/z)9 − (σ∗/z)3

]
. (8)

The parameters of the potential Uw3(z) were adjusted to
get equal well depths at equal distances of the potentials
Uw3(z) and Uw1(z). This was achieved using σ∗ = 0.8328σ
and f∗ = 0.468 in equation (8).

The distance z in equation (7) is not a fully appropriate
measure of the distance of molecules to the surface, since
part of this distance is not accessible for molecules. As
a result, the first minimum of the fluid density profiles,
which indicates the border between the first and second
surface layer, is located noticeably away from z = 1σ. A
more reasonable measure of the distance of molecules to
the surface was introduced in [10,14,16]. Since the fluid-
wall interaction described by equation (7) is equal to zero
at the distance 0.86σ from the pore wall, it is reasonable
to divide this interval equally between the volumes of the
fluid and the solid. However, the distance of about 0.55σ
near the pore wall, in fact, is not accessible for the centers
of fluid molecules. Therefore, ∆z = z − 0.55σ we consider
as the most appropriate definition of the distance between
the center of a molecule and the pore wall.

To approach a semi-infinite surface geometry, we re-
duce the influence of the confinement on the vapor den-
sity profiles ρv(∆z, τ) by simulations of the liquid-vapor
coexistence in very large pore of width H = 40σ. To study
the effect of pore size on ρv(∆z,τ), we also simulated the
liquid-vapor coexistence in a small pore of width H = 12σ.

3 Methods

The properties of a vapor near a weakly attractive sur-
face were studied along the pore coexistence curve, i.e. in
equilibrium with the liquid phase. The coexistence curve
of the confined LJ fluid was determined using Monte Carlo
simulations in the Gibbs ensemble (GEMC) [30]. GEMC
simulations allow to achieve direct equilibration of two
coexisting phases, which are simulated at a given tem-
perature simultaneously in two simulation cells. Equality
of the pressures in the coexisting phases is achieved by
random changes of the volumes of the simulation boxes,
keeping the total volume of the two boxes constant. Equal-
ity of the chemical potentials in the two phases is achieved

by molecular transfers between the simulation boxes. Ef-
ficient molecular transfers [31] enable to obtain highly ac-
curate values of the coexisting densities in a wide temper-
ature range from freezing temperature to the pore critical
temperature. For each temperature point the number of
successful transfers between the coexisting phases varied
from dozens per particle at the lowest temperatures to
several hundreds near the pore critical temperature.

The total number of molecules in the liquid and vapor
phases in the large pore of width H = 40σ in the GEMC
simulations was about 8000. The average lateral size L of
the simulation box which contains the vapor phase was
about 20σ. The number of molecules in the vapor phase
Nv varied from ∼100 at the lowest studied temperature to
∼4000 when approaching the critical temperature. More
details of the simulations, parameters of the model fluid,
as well as its bulk coexistence curve and the coexistence
curve in a small pore of width H = 12σ are given in our
previous papers [10,16].

The densities of the coexisting phases were obtained
at 28 temperatures (from T = 0.75 to T = 1.60) in the
pore with H = 40σ and at 26 temperatures (from T =
0.60 to T = 1.30) in the pore with H = 12σ. The lowest
studied temperatures were close to (or even below) the
bulk triple-point temperature of a LJ fluid (values from
0.687 to 0.692 were reported in the literature [32–34]). The
highest studied temperatures (T = 1.13 and 1.16) were
slightly below the pore critical temperatures estimated as
Tc = 1.145 [10] and Tc = 1.165 [16], for the small and large
pore, respectively. The bulk coexistence curve obtained in
[10] by GEMC simulations was found to be consistent with
the bulk critical temperature Tc = 1.1876 obtained using
a histogram reweighting method with subsequent mixed-
field finite size scaling [35]. The reduced temperature used
in the present paper τ = 1−T/Tc measures the deviation
of the temperature from the bulk critical temperature.

The density profiles of the vapor were obtained by
Monte Carlo (MC) simulations in the NVT ensemble, us-
ing the average densities of the vapor phase obtained in
the GEMC simulations and approximately the same num-
ber of molecules in the simulation box. The strong density
gradient near the pore wall and the large pore width makes
the determination of reliable density profiles in such pores
very time consuming. This problem was overcome by using
two kinds of moves in MC simulations in the NVT ensem-
ble. The first kind of moves is a standard MC move with
a maximal displacement of a molecule, which provides an
acceptance probability of about 50%. The second kind of
move is a long-distance molecular transfer inside the sim-
ulation box: an attempt to place randomly chosen fluid
molecule into a randomly chosen position. This move is
similar to the one used in GEMC simulations for molecu-
lar transfers between the two simulation boxes. Such long-
distance molecular transfers essentially improve the sam-
pling of density profiles. The local density was determined
for layers of 0.02σ width. The resulting density profiles
were averaged over 105 configurations, taken each 1000th
MC step. This yielded a statistical uncertainty of the local
density ρ(z) of less than 1%.
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Fig. 2. Temperature evolution of the density profiles in the
vapor phases along the coexistence curves of the LJ fluid con-
fined in slitlike pore with H = 12σ (upper panel) and H = 40σ
(lower panel). r is the distance to the pore center.

4 Results

4.1 Adsorption of low-density vapor

The simulated density profiles of vapor along the pore
coexistence curve for small and large pores are shown in
Figure 2. The maximum of the vapor density near the
wall is pronounced in the whole temperature range and
increases with temperature similarly in both pores. Close
to the triple point temperature, the vapor density profiles
can be perfectly described by the Boltzmann formula for
the density distribution of ideal gas in an external field:

ρ(∆z, τ) = ρb exp (−β∗Uw(z)) , (9)

where ρb is the vapor density far from the surface, β∗ is the
inverse product of temperature and Boltzmann constant
kB. For the fluid-wall interaction potential used in the
present paper (Eq. (7)), the Boltzmann formula (9) reads:

ρ(∆z, τ) = ρb exp
[
−4f

(
0.4 (σ/z)10 − (σ/z)4

)
/T

]
.

(10)
The vapor density profiles in small and large pores and
equation (10) are shown in Figure 3 for several temper-
atures close to the triple point. Evidently, the maximum
of ρv(∆z, τ) corresponds to the minimum of the fluid-wall
potential.

Fig. 3. Density profiles of saturated LJ vapor in a pore with
H = 12σ at T = 0.6, 0.65, 0.7 and 0.75 (open circles). Data
at T = 0.75 for pore H = 40σ are shown by solid circles.
Boltzmann equation (9) with ρb equal to the density in the
pore center is shown by solid lines.

The location of the first density maximum coincides
in the vapor and liquid [10,11,16] phases in the whole
range of the liquid-vapor coexistence. So, in the consid-
ered temperature and density ranges, this maximum orig-
inates exclusively from the location of the fluid molecules
in the well-depth of the fluid-wall interaction potential.
Only in extremely dense fluids the repulsion between the
fluid molecules slightly shifts this maximum toward the
surface [10]. Localization of the fluid molecules in the first
layer creates an effective “surface” potential for the other
fluid molecules with a well-depth, located about 1σ from
the first layer. This effect causes oscillations of the lo-
cal fluid density, which decay on moving away from the
surface. In the liquid phase several oscillations can be ob-
served at low temperatures, whereas in the saturated LJ
vapor only two density oscillations can be detected.

When the density of the saturated vapor exceeds 0.02
(at T > 0.80), an ideal-gas approach overestimates the ad-
sorption of the vapor at the surface (see Fig. 4, solid lines).
When intermolecular interactions are not negligible, the
isothermal compressibility χ of the real gas becomes larger
than the one of the ideal gas and the response of the fluid
to the surface field may be expected to be stronger in ac-
cordance with the following equation [36,37]:

ρ(∆z) = ρb exp [−Uw(z)ρbχ] . (11)

The isothermal compressibility χ of the homogeneous fluid
at low densities may be presented by a virial expansion

ρbχ/β∗ = 1 − 2B(T )ρb − 3C(T )ρ2
b + ..., (12)

where B(T) and C(T) are the second and third virial co-
efficient, respectively. The second virial coefficient for the
interaction potentials, which decay faster than r−3 at large
r, may be calculated by equation:

B(T ) = −2π

∫
[exp (−βULJ) − 1] r2dr. (13)
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Fig. 4. Density profiles of saturated LJ vapor in a pore with
H = 40σ at T = 0.8, 0.85, 0.9 and 0.95 (open circles).
Boltzmann equation (9) and equation (11) with ρb equal to
the density in the pore center are shown by solid and dashed
lines, respectively.

For the truncated LJ interaction potential used in the
present simulations, the integral in equation (13) should
have an upper limit 2.5σ. The second virial coefficient cal-
culated at various temperatures with equation (13) are
given in Table 1. The density profiles calculated by equa-
tions (11) and (12), truncated at the second virial coeffi-
cient, are shown in Figure 4 by dashed lines. As it was
noticed before [36,37], equation (11) essentially overes-
timates the fluid adsorption near a pore wall and devi-
ates from the real density profiles even more than the
Boltzmann approach (9).

Overestimation of the adsorption calculated with equa-
tions (9) and (11) originates from neglecting the missing
neighbor effect, which causes weakening of the potential
energy of the molecules near the boundary due to the ab-
sence of fluid molecules on the other side of boundary.
Indeed, when deriving equation (11), the reference homo-
geneous system (in the absence of a surface field) was as-
sumed as a continuous fluid without boundary [36,37].
Note, that in (9) the missing neighbor effect is absent in-
trinsically. Weakening of the fluid-fluid interaction energy
U av

LJ per molecules near the surface causes a depletion of
density and this effect is proportional to the value of U av

LJ
in the bulk fluid. That is why the missing neighbor ef-
fect should be taken into account always when U av

LJ is not
negligible. Note also, that both the ideal gas approach
(Eq. (9)) and the rare gas approach (Eq. (11)) are not
able to reproduce the second density oscillation, which
becomes noticeable at T ≥ 0.90 (see Fig. 4).

4.2 Crossover from adsorption to depletion

Although the second oscillation is still visible up to the
pore critical temperature (see Fig. 2), the vapor density
profiles at ∆z > 2 remain practically smooth in the whole
studied temperature and density range. In particular, the
gradual adsorption of the fluid spreads deeper into the

Table 1. The values ρb of the vapor density in the center
of the pore with H = 40σ at various temperatures T (re-
duced temperatures τ ). The second virial coefficient B(T), cal-
culated with equation (13), and the dimensionless isothermal
compressibility ρbχ/β∗, calculated with equation (12). The ra-
tio of ρb to the density of ρ0

b of the saturated bulk vapor.

T τ ρb B(T)/σ3 ρbχ/β∗ ρb/ρ0
b

±0.1%

0.75 0.368 0.00685 –8.02 1.110 1.373

0.80 0.326 0.01149 –7.14 1.165 1.171

0.85 0.284 0.01775 –6.40 1.228 1.091

0.90 0.242 0.02565 –5.78 1.297 1.036

0.93 0.217 0.03250 –5.45 1.354 1.047

0.95 0.200 0.03807 –5.24 1.398 1.062

0.96 0.192 0.0413 –5.14 1.423 1.075

0.97 0.183 0.0430 –5.05 1.432 1.044

0.98 0.175 0.0463 –4.95 1.456 1.050

0.99 0.166 0.0489 –4.86 1.473 1.037

1.00 0.158 0.0521 –4.77 1.494 1.033

1.01 0.150 0.0572 –4.69 1.532 1.061

1.02 0.141 0.0611 –4.60 1.557 1.061

1.03 0.133 0.0654 –4.52 1.585 1.062

1.04 0.124 0.0708 –4.44 1.621 1.077

1.05 0.116 0.0750 –4.36 1.645 1.068

1.06 0.107 0.0795 –4.29 1.672 1.059

1.07 0.099 0.0846 –4.21 1.701 1.054

1.08 0.091 0.0889 –4.14 1.724 1.037

1.09 0.082 0.0961 –4.07 1.767 1.045

1.10 0.074 0.1027 –4.00 1.804 1.041

1.11 0.065 0.1106 –3.94 1.851 1.043

1.12 0.057 0.1208 –3.87 1.910 1.057

1.13 0.049 0.1305 –3.81 1.965 1.056

1.14 0.040 0.1380 –3.74 1.999 1.028

1.15 0.032 0.1606 –3.68 2.137 1.094

1.155 0.027 0.1643 –3.65 2.152 1.066

1.16 0.023 0.1685 –3.62 2.170 1.039

pore interior with increasing temperature and at T = 1.08
to 1.10 it is visible over 6 to 8σ from the surface (see
Fig. 5). The surface perturbations, such as the missing
neighbor effect and the short-range surface field, decay
exponentially with an increasing distance from the sur-
face and this decay is governed by the bulk correlation
length [12,17]. This exponential behavior may be distorted
by the long-range fluid-wall potential. However, we still
may expect an exponential decay of the surface perturba-
tions when the fluid-wall interaction is weak. In this case,
the smooth part of the density profiles may be described
by the following empirical equation:

ρ(∆z) = ρb + (ρs − ρb) exp

(
− ∆z

ξeff
−

)
, (14)

where ρs is an effective surface density at ∆z = 0 and
ξeff
− is the effective correlation length, which describes
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Fig. 5. Density profiles of saturated LJ vapor in a pore with H = 40σ are shown by open circles in normal and enlarged scales
in the left and right panels, respectively. Fits to equation (14) in the range ∆z ≥ 2σ are shown by dashed lines.

intrusion of the surface perturbation into the bulk fluid.
The fits of equation (14) to the smooth part of the den-
sity profiles (∆z ≥ 2σ) are shown in Figure 5. The values
of the fitting parameter ξeff

− and their error bars, which
represent 95% confidence intervals, are shown in Table 2.
The surface density ρs approaches the bulk density with
increasing temperature. For example, ρs/ρb=1.097 at T =
1.08 and ρs/ρb = 1.034 at T = 1.10. When ρs > ρb, the
value of ξeff

− exceeds the bulk correlation length ξ− es-
timated from the analysis of the order parameter profiles
[10] and liquid density profiles [16] (see Tab. 2 and Fig. 6).
Obviously, this reflects the slower decay of the surface
perturbation caused by long-range tail of fluid-wall po-
tential in comparison with exponential decay governed by
the bulk correlation length. The difference between ξeff

−
and ξ− increases when the density profile becomes almost
flat (ρs ≈ ρb at T ≈ 1.115), i.e. when the missing neigh-
bor effect and the surface field roughly compensate each
other.

When the temperature increases to T = 1.11, a clear
maximum can be seen in the density profile at ∆zmax ≈
3σ (see Fig. 7, open circles). The nature of this maximum
can not be related to density oscillations due to the attrac-
tion of molecules to the second layer, as a minimum and
not a maximum should appear at ∆z = 3σ in such a case.
This density maximum is also clearly seen at T = 1.12 and
1.13 and its position moves away rapidly from the surface
with increasing temperature. At higher temperatures, the
density maximum is much weaker, but still visible in large

Table 2. Location ∆zmax of the maximum of the density pro-
files in vapor and liquid phases, obtained directly from simu-
lations and from equation (26). The values of the parameter
ξeff
− and their standard deviations were determined from the

fits of the vapor density profiles to equation (14). The values of
the bulk correlation length ξ− were obtained from the analysis
of the liquid density profiles [16].

Vapor Liquid

T ∆zmax ∆zmax ξeff
− ∆zmax ξ−

sim. Eq. (26) Eq. (14) sim. Ref. [16]
1.02 – – 1.24 ± 0.03 7 0.82
1.03 – – 1.31 ± 0.03 10 0.89
1.04 – – 1.35 ± 0.03 7 0.87
1.05 – – 1.47 ± 0.03 10 0.95
1.06 – – 1.60 ± 0.04 10 1.10
1.08 – – 1.86 ± 0.05 9. 1.16
1.09 – – 2.69 ± 0.11 9.5 1.31
1.10 – – 2.91 ± 0.14 11 1.47
1.11 3 3.45 3.93 ± 0.44 11 1.57
1.12 4.5 4.55 0.31 ± 0.03 11.5 1.68
1.13 6 5.8 0.79 ± 0.03 13 1.95
1.14 7.5 7.5 0.97 ± 0.02 16 2.14
1.15 9.5 9.7 1.70 ± 0.02 18 2.40
1.155 – 11.3 1.86 ± 0.03 16 2.91
1.16 12 13.5 1.90 ± 0.02 – 3.32

scale. Its position ∆zmax is shown by arrows in Figures 7
and 8 and also given in Table 2.
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Fig. 6. Temperature dependence of the effective correlation
length ξeff

− determined from the fits of the vapor density pro-
files to equation (14): T < 1.115 (solid circles), T > 1.115 (solid
triangles). T = 1.115 is shown by vertical dotted line. Correla-
tion length ξ− determined from the liquid phase [16] is shown
by open circles. The solid line represents the asymptotic power
law ξ− = 0.30 στ−ν determined from the order parameter in
small pore [10].

4.3 Depletion of high-density vapor

At high temperatures close to the bulk critical temper-
ature, the profiles of the vapor apart from the first two
layers near the surface are convex upwards and ρv(∆z,τ)
can be described by the equation (14) with ρs < ρb. The
fits of the vapor density profiles by the equation (14) are
shown by dashed lines in Figure 8 for the 5 highest temper-
atures studied. Evidently, the exponential equation (14)
provides a good description of the depletion of the vapor
in the range ∆z ≥ 2σ. The values of ξeff

− obtained from
the fits (Tab. 2) are noticeably smaller than the bulk cor-
relation lengths ξ− [10,16]. This should be attributed to
the long-range fluid-wall potential, whose effect is opposite
to the general density depletion dominating at high tem-
peratures. The discrepancy between ξeff

− and ξ− is maxi-
mal when T is close to 1.115, where the density profile is
almost flat and decreases when approaching the pore crit-
ical temperature (Tab. 2, Fig. 6). Note, that the deviation
of the correlation length from the asymptotic tempera-
ture dependence is different in the bulk liquid and vapor
phases, whose asymmetry strongly enhances when moving
away from the critical temperature.

4.4 Interplay between density depletion
and long-range attraction

The maximum of the density profile of a vapor phase is ob-
served at temperatures T ≥ 1.11 (see arrows in Figs. 7, 8
and Tab. 2). In the density profiles of the coexisting liquid
phase a maximum of the density profiles was also detected
(see Fig. 5 (inset) in Ref. [16] for T = 1.10). In the liquid

Fig. 7. Density profiles of a saturated LJ vapor in a pore
with H = 40σ are shown by open circles in enlarged scales.
Equation (26) for respective temperatures is shown by solid
lines. Maxima of density profiles located at ∆zmax are indicated
by arrows.

Fig. 8. Density profiles of the saturated LJ vapor in the pore
with H = 40σ at T = 1.13, 1.14, 1.15, 1.155 and 1.16 are
shown by open circles in enlarged scale. Fits by the exponential
equation (14) are shown by dashed lines. Maxima of the density
profiles located at ∆zmax are indicated by arrows.

phase this maximum can be seen at T ≥ 1.02. An exam-
ple of a liquid density profile with a maximum is shown in
Figure 8 for the temperature T = 1.04. Although the am-
plitude of a maximum is very small (upper panel) it can
be clearly seen in large scale (lower panel). The locations
∆zmax of the maximum in the density profiles of the liq-
uid are shown in Table 2 and in Figure 10. In both phases
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Fig. 9. Density profile of the saturated LJ liquid in the pore
with H = 40σ at T = 1.04 in normal (upper panel) and en-
larged (lower panel) scales is shown by open circles. Density
in the pore center ρb = 0.6247 is shown by a dashed line. The
maximum of the density profile, located at ∆zmax , is indicated
by arrow.

the density maximum moves away from the surface with
increasing temperature. The temperature dependence of
∆zmax in the vapor phase shows almost perfect logarith-
mic behavior and can be described by the equation

∆zmax(σ) = −8.58 ln τ − 20.2, (15)

shown by the dashed line in Figure 10. The density max-
imum in the liquid phase can be located with essentially
lower accuracy. A fit of ∆zmax by a logarithmic tempera-
ture dependence gives the equation

∆zmax(σ) = −5.77 ln τ − 3.68, (16)

which is also shown in Figure 10.
To clarify the origin of the density maxima in the den-

sity profiles and to understand its shift with temperature,
we need an analytical expression for the density profile,
which accounts for the missing neighbor effect and for the
effect of a long-range surface field. Below we derive such an
expression for the local density, assuming an exponential
density depletion due to the missing neighbor effect as a
reference function and taking into account the long-range
surface potential as a small perturbation.

The equilibrium density profile should satisfy the fol-
lowing integro-differential equation [2]:

∇1 ln ρ(r1) + β∗∇1Uw(r1) =
∫

dr2C
(2)(r1, r2)∇2ρ(r2).

(17)

Fig. 10. Location ∆zmax of the maximum in the density pro-
files of vapor (open circles) and liquid (open squares) in the
pore with H = 40σ. Equations (15) and (16) are shown by
dashed lines. The values ∆zmax found from equation (26) with
ξ0 = 0.117σ are shown by solid circles.

where C (2)(r1,r2) is a pair correlation function. In the
case of a slowly varying density, which is the case indeed
for the studied profiles at ∆z > 2σ, the integral on the
right side of the equation (17) can be simplified [2]:
∫

dr2C
(2)(r1, r2)∇2ρ(r2) = ∇1ρ(r1)

∫
dr2C

(2)(r1 − r2).

(18)

Near a planar surface the density varies only in the
z -direction, normal to the surface. For a weak density
gradient we may neglect spatial variations of the pair cor-
relation function. In such a case, equation (17) can be
rewritten as:

∂

∂z
ln ρ(z) + β∗ ∂

∂z
Uw(z) =

∂

∂z
ρ(z)

∫
C(2)(r)dr. (19)

Using the well-known relation between compressibility χ
and pair correlation function C (2)(r) [38], equation (19)
reads:

∂

∂z
ln ρ(z) + β∗ ∂

∂z
Uw(z) =

∂

∂z
ρ(z) (χρb/β∗ − 1) /ρb.

(20)

In the absence of a fluid-wall interactions (Uw(z) = 0), the
density profile ρ0(z ) should satisfy the following equation:

∂

∂z
ln ρ0(z) =

∂

∂z
ρ0(z) (χρb/β∗ − 1) /ρb. (21)

Introducing ∆ρ(z ) = ρ(z)− ρ0(z ) as a deviation from the
profile in the absence of a fluid-wall interaction, equa-
tion (20) becomes:

∂

∂z
ln ρ(z) + β∗ ∂

∂z
Uw(z) =

∂

∂z
ρ0(z) (χρb/β∗ − 1) /ρb

+
∂

∂z
∆ρ(z) (χρb/β∗ − 1) /ρb. (22)
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Taking into account equation (21), we obtain:

∂

∂z
ln

ρ(z)
ρ0(z)

= −β∗ ∂

∂z
Uw +

∂

∂z
∆ρ(z) (χρb/β∗ − 1) /ρb.

(23)

If the perturbation ∆ρ(z) due to the fluid-wall interaction
is small, the second term on the right side of equation (23)
may be approximated by the Boltzmann distribution as:

∆ρ(z)
ρ0(z)

= exp (−β∗Uw(z)) − 1 ≈ −β∗Uw(z). (24)

Integration of equation (23) yields the following density
profile

ρ(z) = ρ0(z) exp [−Uw(z)ρbχ] . (25)

Near weakly attractive surfaces, the profiles of the sat-
urated liquids and vapors show pronounced density de-
pletion at high temperatures, which originates from the
missing neighbor effect [10,11,14] (see also Figs. 8, 9). In
this regime, the fluid density profile ρ0(z), unperturbed by
the long-range fluid-wall attraction, follows equation (14)
with ρs = 0 and equation (25) becomes

ρ(∆z) = ρb

[
1 − exp

(
−∆z

ξ−

)]
exp [−Uw(z)ρbχ] . (26)

This equation reflects two competing surface effects: deple-
tion of the density toward the surface due to the missing
neighbors and an opposite trend due to the long-range
fluid-wall attraction, that may result in a density maxi-
mum.

Equation (26) allows an analysis of the density pro-
file and, in particular, the location of the expected den-
sity maximum. For these purposes, we have calculated the
isothermal compressibility by equation (12), using the val-
ues of the second virial coefficient B(T) from Table 1 and
third virial coefficient C(T) from reference [39]. Note, that
contribution of C(T) is practically negligible and does not
exceed 1% in studied temperature and density range. The
values ρb of the fluid density far from the wall were taken
from Table 1. The values of the dimensionless compress-
ibility χρb/β∗, calculated in such a way, are given in Ta-
ble 1. We used the asymptotic power law

ξ− = ξ0τ
−ν (27)

to describe the temperature dependence of the the bulk
correlation length in the vapor phase. The amplitude ξ0

was chosen as 0.117σ in order to reproduce the value ξeff
−

obtained from the fit to exponential equation (14) of den-
sity profile at T = 1.14, i.e. at the middle of the tem-
perature interval where surface field can be considered as
perturbation of strong density depletion near the wall.

The density profiles calculated with equations (26) and
(27) are compared with simulation data at T = 1.11, 1.12
and 1.13 in Figure 7. Equation (26) gives density maxi-
mum rather close to the ones, observed in the simulations.

Despite essential underestimation of the amplitude of the
density maximum, equation (26) qualitatively reproduces
the observed evolution of the density profiles with temper-
ature. In particular, the location of the density maximum,
estimated from the simulated density profiles and found
from equation (26), well coincide (see Fig. 10 and Tab. 2).

As we can see from Figure 10, the maxima of the den-
sity profiles of the saturated liquid are observed further
from the surface, in comparison with the saturated vapor
at the same temperature. This is directly related to the
appearance of a drying layer in the liquid phase near a
weakly attractive surface [16]. In the presence of a drying
layer the liquid density profile ρ0(z ) can be described by
a interfacial-like equation (see Eq. (6) in Ref. [16]). The
effect of a fluid-wall potential on such a profile can be con-
sidered in a similar way, as described above (see Eq. (25)).
Similarly to the vapor case, the values of ∆zmax, calcu-
lated in such a way moves away from the surface with
increasing temperature.

4.5 Gibbs adsorption

The temperature evolution of the obtained vapor density
profiles reflects a competition of two effects: long-range
fluid-wall attraction and the effect of missing neighbors.
At low temperatures the wall attraction dominates and
yields concave density profiles up to T ≈ 1.10. At higher
temperatures, the missing neighbor effect dominates and
the density profiles are convex upwards. This behavior of
ρv(∆z,τ) is reflected in the temperature dependence of
the surface excess adsorption (desorption) Γ . The Gibbs
adsorption Γ describes the excess (deficit) of mass per
unit surface area and can be calculated from the density
profiles:

Γ =
∫ H/2

0

ρ(∆z)d(∆z) − ρbH/2. (28)

The behavior of the density in the first surface layer, where
molecules are strongly localized in the minimum of the
fluid-wall potential, is quite different from the other layers.
Therefore, we analyzed separately the excess adsorption
for the first layer, Γ (1σ), and the adsorption Γ for the
rest of the vapor. The values of Γ (1σ) and Γ , calculated
for the pores with H = 40σ and H = 12σ, are shown as a
function of the reduced temperature τ in Figure 11.

The excess adsorption in the first layer Γ (1σ) is pos-
itive only at low temperatures, more precisely, in the
same range where the density profiles are described by
the Boltzmann law for ideal gas (Eq. (9)). When devia-
tions from the ideal gas behavior become noticeable, the
deficit of density is observed in the first surface layer. This
desorption increases rapidly with increasing temperature
and it is clearly related to the missing neighbor effect.

In both pores, a clear crossover of Γ from adsorp-
tion regime (Γ > 0) to depletion regime (Γ < 0) occurs
with increasing temperature (Fig. 11). In the large pore,
the crossover temperature, defined as Γ ≈ 0, is about
T = 1.12, which corresponds to the most ‘flat’ density
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Fig. 11. Gibbs adsorption Γ of the vapor, calculated with
equation (28), as function of a reduced temperature τ . Ad-
sorption in the first surface layer ∆z ≤ 1σ: squares. Adsorp-
tion in the range ∆z ≥ 1σ: circles. Data for the pores with
H = 40σ and H = 12σ are shown with open and solid symbols,
respectively.

profile at ∆z ≥ 2σ which, however, shows a clear max-
imum (see Fig. 7, middle panel). In the small pore, the
crossover temperature from adsorption to depletion is no-
ticeably lower and we estimate it as T ≈ 1.07. Again, at
this temperature the vapor density profile is closest to a
horizontal line [10], apart from one to two density oscilla-
tions near the wall.

Note, that the behavior of the excess adsorption Γ in
the small and large pores becomes almost identical if it is
considered as a function of the density in the pore center
(Fig. 12). This evidences, that the crossover temperature
from adsorption to depletion is determined mainly by the
bulk density. For the considered weakly attractive fluid-
potential the crossover occurs at ρb ≈ 0.12.

5 Discussion

In computer simulations, the density profiles of a fluid near
a wall can be studied only in pore geometry. This results,
in general, in a shift of the liquid-vapor phase transition,
which diminishes with increasing pore width. To minimize
the effect of confinement we used a large slitlike pore of
width H = 40σ. The shift of the liquid-vapor coexistence
in the pore can be characterized by the ratio p/p0 of the
saturated vapor pressures in the pore and in the bulk.
In ideal gas approximation this ratio is equal to the ratio
ρb/ρ0

b , where ρ0
b is the density of the saturated bulk vapor.

Apart from the three lowest temperatures, the pressure
shift remains almost constant at all studied temperatures:
p/p0 ≈ 1.054, which corresponds to a practically constant
shift ∆µ = 0.057 of the reduced chemical potential. As
the latter value is relatively small, we may expect that
regularities, obtained for the large pore with H = 40σ,
remain valid for semiinfinite systems.

The analysis of the density profiles reveals several
regimes, which are determined mainly by the vapor den-

Fig. 12. Gibbs adsorption Γ of the vapor in the range ∆z ≥ 1σ,
calculated with equation (28), as function of the vapor density
ρb in the pore interior. Data for the pores with H = 40σ and
H = 12σ are shown by open and solid symbols, respectively.

sity ρb in the pore interior: (i) ideal gas adsorption; (ii)
weak adsorption; (iii) neutral-wall regime; and (iv) strong
density depletion. Regime (i) is observed at low tempera-
tures when the bulk vapor density ρb does not exceed 0.02
and a second density oscillation near the surface is neg-
ligible. The Boltzmann law (Eq. (9)) perfectly describes
the density profiles ρv(∆z, τ) in this regime. Weak adsorp-
tion (ii) is observed when 0.02 < ρb < 0.10, i.e. up to about
T = 1.10. In this regime the vapor density shows a concave
down profile apart from two density oscillations near the
surface and this part of the profile can be described by the
empirical equation (14) with a surface density ρs, exceed-
ing ρb. A crossover from adsorption to depletion of vapor
is observed in regime (iii), which occurs when ρb is about
0.12, when the density profile is roughly flat. Closer to the
critical point, in regime (iv), the vapor density is strongly
depleted near the wall and can be described by the expo-
nential equation (14) with a surface density ρs < ρb.

Theory of critical phenomena states that intrusion of
any short-range surface perturbation into the bulk fluid is
governed by the correlation length [17]. Computer sim-
ulations of LJ fluid and water confined in small pores
with weakly attractive walls evidence a perfect scaling be-
havior of the order parameter profiles at high tempera-
tures [10,14] and allow estimation of the bulk correlation
length. Besides, temperature dependence of the local or-
der parameter indicates, that a crossover from bulk to the
surface critical behavior occurs when the distance to the
surface is about 2 correlation lengths found from the scal-
ing of the density profiles. Analysis of density profiles in
liquid coexistence phase using interfacial equation, which
takes into account formation of a drying layer in large
pore, yields estimation of the bulk correlation length con-
sistence with ξ− found in small pores (see Fig. 5 open cir-
cles and solid line). The effective correlation length ξeff

−
reported here (Tab. 2) seems to be reasonable in temper-
ature intervals where ρv shows strong depletion or strong
adsorption (Fig. 5). In the intermediate range, where the
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Fig. 13. Density profiles of a saturated LJ vapor at T = 1.15 in
a pore with H = 40σ. Enhanced fluid-wall interaction potential
Uw2(z): upper panel, solid circles. Potential Uw3(z) with longer
interaction range: lower panel, solid circles. Density profile in
a reference system with Uw1(z) is shown by open circles.

vapor profile is closed to flat, unreasonable values of ξeff
−

evidences inapplicability of equation (14), when the am-
plitude of depletion/adsorption is small. Note, that long-
range surface-fluid interaction practically does not affect
the correlation length determined in liquid phase as far
as it was evaluated from the shape of liquid-drying layer
interface which is separated from the wall by drying layer,
which effectively reduces the effects of the surface.

In regimes (iii) and (iv) a maximum density is observed
in the profiles ρv(∆z,τ). This maximum separates a con-
cave part in the pore interior and a depleted part near the
pore wall and moves away from the surface with increas-
ing temperature. We have shown, that the evolution of this
maximum can be described using equation (26), derived
from the assumption, that the weak fluid-wall interaction
is a small perturbation of the reference system in the ab-
sence of a fluid-wall attraction. Contrary to the previous
considerations [36,37], a reference, nonperturbed, system
was imposed to have an exponential density depletion near
the surface. Such profiles are indeed observed close to the
critical point in large as well as in small pores. Although,
the proposed equation (26) clearly underestimates the am-
plitude of the maximum, it well reproduces the temper-
ature evolution of the location of the maximum ∆zmax

with respect to the surface.
Vapor density profiles are highly sensitive to the de-

tails of the fluid-wall interaction potential. In particular,

an increase of the strength of the fluid-wall potential shifts
the crossover temperature from adsorption to depletion
closer to the critical point. In Figure 13 (upper panel)
the vapor density profiles for the pores with fluid-wall po-
tentials Uw1 and Uw2 are compared at T = 1.15. The
regime of density depletion, observed for potential Uw1,
becomes the regime of a weak adsorption, due to strength-
ening of a fluid-wall interaction on about 30% for poten-
tial Uw2. Further strengthening of the fluid-wall interac-
tion should move the crossover temperature to the critical
point (an almost flat density profile was observed at the
critical point, when the factor f in Eq. (7) is about 0.644
[27]). We also simulated the profile of the coexisting vapor
in a pore with fluid-wall interaction potential Uw3 which
possesses the same strength (well-depth) but a larger in-
teraction range than potential Uw1 (see section Methods
for details). The increase of the interaction range affects
the vapor density profile in the same way, as its strength-
ening. At T = 1.15 (Fig. 13, lower panel), the regime of
density depletion (potential Uw1) turns into a regime of a
weak adsorption (potential Uw3).

We never observed the power-law behavior of density
profiles at short distances from the wall, which is observed
for magnetization profiles in Ising magnets [17,23,24]. We
may assume, that the range of validity of the power-law
behavior does not exceed 2σ in the temperature range
studied in present paper. Two strong density oscillations
dominate in this range and may prevent observation the
power-law behavior.

Appearance of the density maximum at ∆zmax in both
coexisting phases may be explained by the interplay of the
missing neighbor effect and the long-range attractive po-
tential of the pore wall. This idea is strongly supported by
the specific temperature evolution of ∆zmax in both fluid
phases: it diverges when approaching the critical temper-
ature. Such behavior is in accord with the absence of this
density maximum at T = Tc in the density profiles of
LJ fluid near the same wall [27]. The observed maximum
has the similar nature as the maximum predicted for the
magnetization profiles of the Ising magnets [23,24], which
originates from the interplay of the missing neighbor effect
and the short-range finite surface field. Existence of such
maximum of magnetization (density, concentration, etc.)
seems to be a general feature of the systems of interacting
particles near a boundary with non-zero surface field.

The universal character of the surface critical behavior
of fluids may serve as a powerful tool to predict fluid den-
sity profiles in various thermodynamic states near various
surfaces. Therefore, studies of the surface critical behavior
of fluids have both fundamental and practical importance.
One of the main problem in this field is a correct mapping
of confined fluid onto the much better studied behavior
of Ising magnets. Note, however, that even in lattice sys-
tems the critical behavior in the presence of a nonzero
surface field (the most relevant case for fluids) was stud-
ied by simulations in a few papers only [40–43]. In partic-
ular, the evolution of the magnetization profiles in both
coexisting phases was not simulated yet, and the
schematic picture, shown in Figure 1, remains to be tested.
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