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Experimental studies show that the short peptide fragmentsAβ16−22 form fibrils as it is known
from the full lengthβ-amyloid peptide. This fibril growth is strongly temperature dependent.
We report here a simulation study of the temperature dependent Aβ16−22 aggregation in ex-
plicit water. We simulated a system of ten Aβ16−22 peptides with 5900 SPC/E water in a cubic
box and used 76 replicas (with20 ns simulation time per replica) distributed over a tempera-
ture range from 285.0 to606.3 K. Replica Exchange Molecular Dynamics (REMD) simulation
is an efficient way for equilibration and simulation of complex molecular systems at different
temperatures. The temperature dependence of radius of gyration RG and the solvent accessible
surface area(SASA) of the aggregates, as well as structuralproperties like mutual orientation
and number of peptide-peptide hydrogen bonds can be understood by the different temperature
dependence of hydrogen bond strength, electrostatic, and hydrophobic interactions.

The Aβ16−22 fragment is highly prone to aggregation, and a prototype molecule for
the study of processes of amyloidosis. It contains a centralhydrophobic core, a positive
charge at the N-terminus (Lys16), and a negative charge at the C-terminus (Glu22). Solid-
state NMR showed that this segment of the full amyloid-β peptide can form fibrils with
an antiparallel strand organization.1 Experimental studies of Aβ fibril formation also re-
vealed a strong temperature dependence.2 This could also be obtained in constant pressure
MD simulations of Aβ16−22 peptides aggregation.3 Here we present first results of an
extension of this study, where we apply Replica Exchange Molecular Dynamics (REMD)
simulations. This is an efficient way to simulate complex systems at different temperatures
and is the simplest and most general form of simulated tempering.4 It offers a much-
improved approach for determining oligomer distributionsrelevant to aggregation.5 The
basic idea of REMD is to simulate different copies (replicas) of the system at the same
time but at different temperatures. After a certain time, conformations are exchanged with
a Metropolis probability, therefore permitting random walks in the temperature space and
escape from local energy traps.6 Recently, Paschek et al.7 published such simulations,
providing the first unbiased folding of the Trp-cage in explicit solvent using 40 replicas
(100 ns per replica).7

Taking Paschek et al. work as a reference,7 we used REMD to study Aβ16−22 pep-
tides aggregation at atomic level in explicit aqueous solution.8 The GROMACS 3.2.19

simulation package was used in both simulation and data processing. The OPLS-All Atom
force field was chosen to represent the peptide in GROMACS. The system is coupled to
an external heat bath (Nose-Hoover-thermostat) with a relaxation time of1.5 ps. The elec-
trostatic interactions are treated by the smooth particle mesh Ewald summation with a real
space cutoff of0.9 nm. A 2.0 fs timestep was used for all simulations. Solvent constraints
were solved using the SETTLE procedure, while the SHAKE-algorithm was used for the
polymer constraints.
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Figure 1. Properties of the peptide aggregates, averaged over different lengths of the simulation runs as a function
of temperature. Lowest/highest values are marked. (a) Radius of gyration RG of the peptide back-bone atoms.
(b) SASA of hydrophobic residue atoms. (c) Average number ofhydrogen bonds between the peptides. (d) Final
snapshot at398.8 K, hydrophobic residues in white, Lys(+) in cyan and Glu(-) in red.

In the starting configuration of this study, as in the previous constant pressure sim-
ulation series3, six monomeric peptides (Capped Aβ16−22 with the sequence of Ace-
KLVFFAE-NH2) were placed uniformly in a distance of about1.5 nm around the center of
an ordered tetramer which was considered to serve as nucleusfor further growth. It was
obtained in an initial constant pressure simulation of fourpeptides at360 K after 20 ns.3

These 10 peptides are immersed in 5900 SPC/E water moleculesin a5.8×5.8×5.8(nm)3

cubic box and periodic boundary conditions were applied. For REMD we used 76 repli-
cas (20 ns per replica) distributed over a temperature range from 285.0 to606.3 K, where
multiple copies (or replicas) of identical systems are simulated in parallel at different tem-
peratures. The temperature spacing between each of the replicas was chosen such that the
energy distributions overlap sufficiently and state exchange attempts are (on average) ac-
cepted with a20 % probability.

The results from our constant pressure simulations (at seven temperatures from 280 to
460 K) show that the Aβ16−22 monomers first form anti-parallel hydrogen-bonded dimers
at the lower T range of 280–340 K. These aggregate at middle T range from 340 to400 K,
to large structures, which show two major features of the amyloid fibrils: twistedβ-sheets
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formed from antiparallely oriented peptides and the onset of formation of a second layer.
In the higher temperature range (from 400 to460 K) the twist angle between the monomers
increased probably to protect hydrophobic residues from water.3

From the REMD simulations, properties of interest have beenextracted at 76 tempera-
tures. Below391 K, the radius of gyration RG of peptide cluster (calculated from peptide
backbone atoms) decreases with increasing temperature, and started to increase with T be-
low 391 K [Figure 1(a)]. Consequently, also the SASA calculated from the hydrophobic
residues, reached a lowest point at a temperature398 K [Figure 1(b)]. Figures 1(a and b)
show that the aggregated structures at intermediate temperatures extend and disintegrate at
high temperatures. The maximum number of peptide–peptide hydrogen bonds is observed
at around∼ 330 K and decreases at higher temperatures [Figure 1(c)]. The shift of the
positions of the minima of RG and SASA compared to the maximum of the number of
H-bonds can be explained by the fact, that with increasing temperature the H-bonds are
weakened, whereas the hydrophobic interaction strength increases. While the H-bonds
tend to build a planarβ-sheet structure, the increasing hydrophobic interactionproduces
more compact structures [Figure 1(d)]. This may be obtainedby twisting theβ-sheet or
by building up a second sheet, as observed in the constant pressure simulation study.3 In-
terestingly, Meinke and Hansmann10 also observe for a system of sixβ-amyloid fragment
peptides (without explicit water) above400 K a strong increase of RG, but do not observe
a temperature minimum. This is probably due to the lack of water (and the water medi-
ated hydrophobic interaction) in their simulations. To demonstrate the convergence of the
REMD simulations, in figures 1(a, b and c) averages over different lengths of the simula-
tion runs (5, 10, 15 and20 ns) are shown and the minima and maxima are marked. From
15 to20 ns the positions of there extrema on the temperature axis stay a constant, revealing
that20 ns time for each replica is reasonable to study early aggregation.

Our results are in good agreement with the previous work doneby Meinke et al.10

and Gnanakaran et al.5. We find that at low temperatures the structure of the aggregates
is largely determined by hydrogen bonding and electrostatic interactions. This leads to
the formation of well ordered antiparallelβ-sheet structures. With increasing temperature,
hydrophobic interactions become more important, as indicated by the formation of stacked
β-sheets, as well as less regular ordered collapsed clusters. At highest temperatures the
aggregates are found to disintegrate due to the strong thermal motions.
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