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We determine activity coefficients of both components of different binary Lennard-Jones mix-
tures obtained at T* = 2.0 and r* = 0.6 by using two different strategies: (i) direct evaluation
of the excess chemical potentials of both components applying the potential distribution theo-
rem, and (ii) using the Gibbs-Duhem integration based on the activity coefficients of the coun-
ter-component, which was calculated directly from the potential distribution theorem approach.
Both methods lead numerically to similar results and therefore offer a route to determine activity
coefficients of mixtures with large complex molecules by alternatively calculating chemical
potentials of potentially simpler counter-constituents.

1. Introduction

The Gibbs-Duhem integration technique represents a rather familiar approach to
determine activity coefficients of individual components in liquid mixtures [1].
The calculation is typically based on the measurement of partial pressures of one
or several components of the liquid mixture, exploiting the fact that activities
are related with respect to one another by the Gibbs-Duhem relation. Hence, also
activity coefficients of components might be determined, which exhibit an almost
vanishing partial pressure, thus preventing any direct activity determination. Here
we show that the Gibbs-Duhem integration strategy might be also applied to
directly estimate activity coefficients from computer simulations of complex
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fluid mixtures. In perspective, activity coefficients of components might be cal-
culated, which could not be evaluated directly otherwise, such as for large mole-
cules like polymers or proteins. For demonstration purposes we perform simula-
tions for a rather simplified example of fluid mixtures: a binary Lennard-Jones
mixture. Applying the potential distribution theorem [2, 3], we calculate the
excess chemical potential of both components for different compositions cover-
ing a certain part of the composition range, and thus determine the activity coeffi-
cients. In a second step we show that a similar result might be obtained by
Gibbs-Duhem integration of the chemical potential of the corresponding counter-
components.

2. Methods

2.1 Outline of the MD simulations

We perform molecular dynamics (MD) simulations of binary Lennard-Jones (LJ)
mixtures consisting of 512 LJ-particles with varying composition. The simula-
tions were performed under constant pressure and constant temperature condi-
tions using a Verlet integrator [4]. A reduced timestep of δt* = 0.005 was applied
in all cases. The Lennard-Jones interactions were truncated at a cutoff distance
of Rcut > 4σ. An initial equilibration run of 104 timesteps was followed by a
production run of 5 ! 105 timesteps, which was used for analysis. Long-range
corrections for energy and pressure were applied. We employ the GROMACS
simulation program for all MD simulations [5]. The temperatures were fixed at
T* = 2.0 by using the NoséKHoover thermostat [6, 7] with a reduced coupling
time of τ* = 0.5, and the Parrinello-Rahman barostat with a reduced coupling
time of τ* = 1.0. Fixing the system at a reduced pressure of P* = 1.755 is leading
to a reduced equilibrium density of r

* = 0.599 for the pure LJ-liquid (component
B), matching exactly the data reported by Johnson et al. [8]. Here we show
simulation results of two types of binary LJ mixtures with parameters of σAA

= σBB, and varying interaction strengths of εAA = 1.33 ! εBB, and εAA

= 2.00 ! εBB. The A-B cross interactions were obtained applying standard Lo-
rentz-Berthelot mixing rules with εAB = (εAAεBB)1.2. The simulations cover the
entire composition range of both mixtures.

2.2 Activity coefficients from the potential distribution theorem

The chemical potential of a single component α in a fluid mixture is given
according to

�μα = �μα
+ + ln aα, (1)

where � = 1 / kBT, aα is the activity, and μα
+ represents the chemical potential at

the reference state. The activity is expressed as aα = γαxα, where xα is the mole
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fraction of component α, and γα is the corresponding activity coefficient. Ac-
cording to the potential distribution theorem [2, 3] (also known as Widom parti-
cle insertion technique), the chemical potential of the monoatomic component α
can be expressed as

�μα = ln
Δ(Nα,…,P,�)

Δ(Nα+1,…,P,�)

= ln
(Nα+1)Λα

3

<V> + ln
<V>

<VeK�ΔUα>
, (2)

where Δ(…) is the isobar isothermal partition function, and < … > denotes
isobar-isothermal averaving. Λα is the thermal wavelength of particle α, V is the
Volume and Nα is the number of particles α. ΔUα is the energy of a virtual
particle of type α, randomly inserted to the system [2], leading to the excess
chemical potential contribution with respect to the ideal gas state of

K�μα,ex = ln [ < V exp( K �ΔUα) > / < V > ]. (3)

Subtracting the chemical potential at the reference state “+”, and recognizing
that xα = Nα / N, we obtain

�μα K �μα
+ = ln aα

= ln[(Nxα+1) <VeK�ΔUα>xα=x+

(Nx++1) <VeK�ΔUα>xα

]. (4)

aα might be also expressed in terms of the corresponding calculated excess chem-
ical potentals

aα =
(Nxα+1)reK�μα,ex

+

(Nx++1)r+eK�μα,ex
. (5)

As reference state “+”, we might either consider the pure liquid (xα = x+ = 1), or
the state of infinite dilution (xα = x+ = 0). Hence, the activity coefficient γα of
component α in the mixture with composition xα is given by

γα =
(N+xα

K1)reK�μα,ex
+

(Nx++1)r+eK�μα,ex
. (6)

Please note that γα / 1 upon approaching the reference state with xα / x+, and
that γα > 1 indicates either weakening of intermolecular interactions and.or a
decrease in volume.

The Boltzmann terms in Eq. 6 were calculated by random Monte Carlo inser-
tions of particles of type A and B into the configurations obtained from the MD
simulations. In order to perform the numerical evaluation of the excess chemical
potential contributions efficiently, we have used an excluded volume map (EVM)
[9], projecting the occupied volume onto a grid of approximately 0.13 ! σ
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Fig. 1. Excess chemical potentials μex of the components A (a) and B (b), as well as the
corresponding densities r* = NσBB

3
.V (c) for the LJ-mixtures with εAA.εBB = 1.33, and εAA.

εBB = 2.0, simulated at T* = 2.0 and P* = 1.755.

Fig. 2. Comparison of the computed activity coefficients for the two different types of mixtures
(a) εAA = 1.33 εBB and (b) εAA = 2.0 εBB. Solid Symbols: Activity coefficients γA and γB,
calculated directly from the excess chemical potentials of components A and B in the mixture.
Open Symbols: Activity coefficients γA, computed from γB, by numerically integrating the
Gibbs-Duhem relation.

mesh-width. Distances smaller than 0.7 ! σ with respect to any LJ-molecule
were neglected and the corresponding term exp(K�ΔUα) taken to be zero. About
1000 successful (nonzero) particle insertions were sampled for each configura-
tion and 2500 configurations were analyzed for each composition.
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2.3 Gibbs-Duhem integration

Starting from the Gibbs-Duhem relation for a binary system

0 = NA dμA + NB dμB, (7)

we arrive at

xA d ln aA = KxB d ln aB, (8)

by inserting xα = Nα . N and expressing the chemical potentials by their corre-
sponding activities. Hence, the activity of component A can be calculated by
integrating activities obtained from component B following

Ed ln aA = K E
xB

1KxB
d ln aB. (9)

In order to avoid the diverging behavior at xA / 1, the calculation is started at
finite concentrations of A, making use of approaching Henry's law, leading to
aA / xA and thus γA / 1. We will consider component (A) as “solute” and
component (B) as “solvent”. Consequently, we are taking the pure liquid state
of component (B) as a reference state for both components. Since the data is
available as discretized information at fixed compositions xα,i, we have to per-
form the integration numerically, applying the recursion formula

ln aA,i+1 = ln aA,i +
(ln aB,i+1Kln aB,i)(xB,i+xB,i+1)

xB,i+xB,i+1K2
. (10)

Recognizing the aA / xA, for xA / 0, we are starting the recursion at ln aA,1

= ln xA,1, assuming γA,1 = 1.

3. Discussion

Table 1 and 2 contain the excess chemical potentials, calculated for the entire
composition range of the two different types of mixtures. The error is estimated
to be about ±0.003 in units of �K1. A moderately increasing interaction strength
of particles of type A, as shown for the case of εAA = 1.33 ! εBB in Fig. 1a and
1b, leads to a lowering of the excess chemical potential for both components. In
parallel, the density is found to increase, with increasing amount of A, as shown
in Fig. 1c. Please note that chemical potential of component B passes through a
shallow minimum at xB ≈ 0.3, indicating that the decreasing amount of free vol-
ume in the dense solution with xB / 0 creates an increasingly less favourable
environment for component B. Here, the volume effect is apparently compensat-
ing, and finally even overcompensating the strengthened attractive interactions.
This behavior is found to be strongly amplified, upon a further increase of inter-
action strength of particles A for the mixtures with εAA = 2.0 ! εBB. Again, the
chemical potential of component A is found to decrease monotonously. However,
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Table 1. Excess chemical potentials μex,α and activities aα obtained for the Lennard-Jones
mixtures with σAA = σBB, and εAA = 1.33 ! εBB, simulated at T* = 2.0 and P* = 1.755. The
shown density values are according to r* = NσBB.V. The data were obtained from the potential
distribution theorem [2, 3].

r* xB �μA,ex �μB,ex

0.6733 0.00000 K0.628 0.140
0.6709 0.03125 K0.634 0.132
0.6687 0.06250 K0.635 0.131
0.6661 0.09375 K0.638 0.123
0.6639 0.12500 K0.618 0.130
0.6616 0.15625 K0.619 0.132
0.6594 0.18750 K0.612 0.123
0.6567 0.21875 K0.605 0.126
0.6548 0.25000 K0.604 0.115
0.6525 0.28125 K0.595 0.121
0.6499 0.31250 K0.584 0.115
0.6477 0.34375 K0.589 0.123
0.6451 0.37500 K0.584 0.117
0.6432 0.40625 K0.568 0.126
0.6406 0.43750 K0.559 0.123
0.6382 0.46875 K0.553 0.123
0.6358 0.50000 K0.552 0.118
0.6336 0.53125 K0.548 0.118
0.6315 0.56250 K0.536 0.127
0.6290 0.59375 K0.531 0.124
0.6266 0.62500 K0.527 0.124
0.6246 0.65625 K0.520 0.128
0.6220 0.68750 K0.512 0.127
0.6199 0.71875 K0.500 0.132
0.6174 0.75000 K0.496 0.134
0.6154 0.78125 K0.485 0.134
0.6131 0.81250 K0.475 0.147
0.6106 0.84375 K0.476 0.139
0.6085 0.87500 K0.456 0.144
0.6061 0.90625 K0.457 0.146
0.6039 0.93750 K0.442 0.155
0.6016 0.96875 K0.430 0.154
0.5995 1.00000 K0.424 0.162

the chemical potential of component B now passes a minimum already at xB ≈ 0.8
and is rapidly increasing thereafter, practically indicating a “squeezing out” tend-
ency of the B particles from the Type-A solution.

The directly calculated activity coefficients are shown in Fig. 2. Please note
that the activity coefficient for component B in both mixtures increases with
xB / 0, although the interaction strength increases. This again strongly empha-
sizes the importance (and sometimes perhaps dominance) of the effect of the
volume changes [10].

In Fig. 2 the activity coefficients γα of components A and B directly obtained
from the potential distribution theorem are given by full symbols. In addition we
also show the activity coefficients of component A as obtained by integrating the
Gibbs-Duhem relation using the activity coefficients of the counter component B.
The data shown in Fig. 2 demonstrates that the activity coefficients are satisfacto-
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Table 2. Excess chemical potentials μex,α and activities aα obtained for the Lennard-Jones
mixtures with σAA = σBB, and εAA = 2.0 ! εBB, simulated at T* = 2.0 and P* = 1.755. The
shown densities values are according to r* = NσBB

3
.V. The data were obtained from the

potential distribution theorem [2, 3].

r* xB �μA,ex �μB,ex

0.7897 0.00000 K2.493 0.605
0.7850 0.03125 K2.488 0.582
0.7802 0.06250 K2.456 0.544
0.7754 0.09375 K2.414 0.534
0.7702 0.12500 K2.444 0.454
0.7652 0.15625 K2.418 0.428
0.7599 0.18750 K2.379 0.403
0.7548 0.21875 K2.363 0.410
0.7492 0.25000 K2.351 0.362
0.7434 0.28125 K2.342 0.326
0.7379 0.31250 K2.320 0.311
0.7320 0.34375 K2.303 0.280
0.7263 0.37500 K2.273 0.256
0.7202 0.40625 K2.236 0.234
0.7140 0.43750 K2.232 0.220
0.7081 0.46875 K2.175 0.213
0.7018 0.50000 K2.151 0.187
0.6954 0.53125 K2.122 0.168
0.6894 0.56250 K2.090 0.165
0.6828 0.59375 K2.039 0.161
0.6765 0.62500 K2.016 0.144
0.6702 0.65625 K1.967 0.142
0.6636 0.68750 K1.932 0.136
0.6571 0.71875 K1.883 0.127
0.6507 0.75000 K1.839 0.127
0.6440 0.78125 K1.802 0.120
0.6377 0.81250 K1.757 0.126
0.6311 0.84375 K1.711 0.131
0.6245 0.87500 K1.670 0.125
0.6181 0.90625 K1.610 0.130
0.6119 0.93750 K1.560 0.141
0.6054 0.96875 K1.510 0.151
0.5995 1.00000 K1.459 0.162

rily recovered, particularly when taking into account the relatively large noise in
the calculated excess chemical potentials shown in Fig. 1. Moreover, since our goal
was just to demonstrate the applicability of the procedure to molecular simulations,
we didn't try possible further improvements of the γA prediction, such as interpola-
tion and.or fitting of the data. The relatively large scatter observed for the case of
εAA = 1.33 ! εBB at large values of xA suggests that an increased accuracy of μex

particularly in the dilute regime of A would be desirable.

4. Conclusion

We have determined the activity coefficients of both components of binary Len-
nard-Jones mixtures obtained for T* = 2.0 and r

* = 0.6. Reference activity coef-
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ficients were obtained by direct evaluation of the excess chemical potentials of
both components applying the potential distribution theorem [2]. In addition,
applying a Gibbs-Duhem integration based on the activity coefficients of the
counter-component “B“ (the solvent), calculated directly via potential distribu-
tion theorem, we were also able to recover the activity coefficients of the solvent.
Both methods lead to very similar results. Therefore we suggest to determine
activity coefficients of mixtures including large complex molecules by alterna-
tively calculating chemical potentials of potentially simpler counter-constituents.
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