Computing Activity Coefficients of Binary Lennard-Jones-Mixtures by Gibbs-Duhem Integration
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We determine activity coefficients of both components of different lgihannard-Jones mixtures obtained at
T* =2.0andp* = 0.6 by using two different strategies: (i) direct evaluation of the excessta potentials
of both components applying the potential distribution theorem , and (ii) ubm@sibbs-Duhem integration
based on the activity coefficients of the counter-component, which alaslated directly from the potential
distribution theorem approach. Both methods lead numerically to similattsesmnd therefore offer a route
to determine activity coefficients of mixtures large complex molecules bynaltieely calculating chemical
potentials of potentially simpler counter-constituents.

Introduction ysis. Long-range corrections for energy and pressure were a
plied. We employ the GROMACS simulation program for all

The Gibbs-Duhem integration technique represents a rathéflD simulations [5]. The temperatures were fixed'at= 2.0
familiar approach to determine activity coefficients ofiinid- Py using the Nos-Hoover thermostat [6, 7] with a reduced
ual components in liquid mixtures [1]. The calculation ipty €OUpPling time ofr* = 0.5, and the Parrinello-Rahman baro-
ically based on the measurement of partial pressures of orgat With a reduced coupling time of = 1.0. Fixing the
or several components of the liquid mixture, exploiting theSyStém at a reduced pressurefdf = 1.755 is leading to a
fact that activities are related with respect to one anotiyer reéduced equilibrium density f* = 0.599 for the pure LJ-
the Gibbs-Duhem relation. Hence, also activity coeffigent llquid (component B), matching exactly the data reported by
of components might be determined, which exhibit an almosghnson et al. [8]. Here we show simulation results of two
vanishing partial pressure, thus preventing any diredv-act YPes of binary LJ mixtures with parametersafs = ops,
ity determination. Here we show that the Gibbs-Duhem in-2nd varying interaction strengths efis = 1.33 x epg,
tegration strategy might be also applied to directly estima @nd€aa = 2.00 x epp. The A-B cross interactions were
activity coefficients from computer simulations of complex OPtained apply standard Lorentz-Berthelot mixing rulegwi
fluid mixtures. In perspective, activity coefficients of com €48 = (eaaepg)'/?. The simulations cover the entire com-
ponents might be calculated, which could not be evaluate@0Sition range of both mixtures.
directly otherwise, such as for large molecules like polggne
or proteins. For demonstration purposes we perform simu-
lations for a rather simplified example of fluid mixtures: a
binary Lennard-Jones mixture. Applying the potentialrilist
bution theorem [2, 3], we calculate the excess chemicahpote
tial of both components for different compositions covgrin
certain part of the composition range, and thus determiae th _ a0
activity coefficients. In a second step we show that a similar PHa = Bpio +1Inda @
result might be obtained by Gibbs-Duhem integration of thewhere3 = 1/kgT, a, is the activity, anduS, represents the
chemical potential of the corresponding counter-comptmen chemical potential at the reference state. The activityis e

pressed as, = Yo.Zo, Wherezx, is the mole fraction of
componenty, andy,, is the corresponding activity coefficient.
Methods According to the potential distribution theorem [2, 3] (ls
known as Widom particle insertion technique), the chemical
potential of the monoatomic componemntcan be expressed

Activity coefficients from the potential distribution theorem

The chemical potential of a single componenin a fluid
mixture is given according to

Outline of the MD simulations

as
We perform molecular dynamics (MD) simulations of bi- B = In A(Ng, ..., P,3)
nary Lennard-Jones (LJ) mixtures consisting of 512 LJ- ¢ A(Ny+1,...,Pf)
particles with varying composition. The simulations weee-p (Ny + 1)A3 (V)
formed under constant pressure and constant temperatwe co = In—= < < +In . ()
V) (V e~ PAUL)

ditions using a Verlet integrator [4]. A reduced timestep of

dt* = 0.005 was applied in all cases. The Lennard-Jones inwhereA(...) is the isobar isothermal partition function, and
teractions were truncated at a cutoff distancerpf; > 4o. (...) denotes isobar-isothermal averaving, is the thermal
Aninitial equilibration run ofl0* timesteps was followed by a wavelength of particler, V' is the Volume andV,, is the num-
production run ob x 10° timesteps, which was used for anal- ber of particlesn. AU, is the energy of a virtual particle of



typec«, randomly inserted to the system [2], leading to the ex- «

. . L . P zp Bra, Bus,
cess chemical potential contribution with respect to theald = =
gas state of 0.6733 0.00000 —0.628 0.140

0.6709 0.03125 —0.634 0.132

_ — InHV exp(—BAU. vyl . 3 0.6687 0.06250 —0.635 0.131

PHaex [V exp(=pAU)) / (V)] ) 0.6661 0.09375 ~0.638 0.123
Subtracting the chemical potential at the reference sfite “ 8-2@?2 g-gggg —g'gig g‘igg
and recognizing that, = N, /N, we obtain 0.6594 018750 0612 0.123
Biue — B = Ina 0.6567 0.21875 —0.605 0.126
Ha = PHq = Mla 0.6548 0.25000 ~0.604 0.115
(Nag +1) (Ve PAU) 0.6525 0.28125 —0.595 0.121

= In . —5AT Te=T_ | .(4) 0.6499 0.31250 —0.584 0.115

(Nz° +1) (Ve Ve 0.6477 0.34375 ~0.589 0.123

) ) ) 0.6451 0.37500 —0.584 0.117

a., Might be also expressed in terms of the corresponding cal-  0.6432 0.40625 —0.568 0.126
culated excess chemical potentals 0.6406 0.43750 —0.559 0.123
0.6382 0.46875 —0.553 0.123

(Nzg +1) pePhae 0.6358 0.50000 —0.552 0.118

Qo = . e %) 0.6336 0.53125 —0.548 0.118

(Na° +1) p° e Phae 0.6315 0.56250 —0.536 0.127

As reference state®”, we might either consider the pure lig- 8‘2322 8‘22?88 :g‘gg; g‘gi
uid (:l?a = z° = 1), or the State. Of infinite dllUtlonﬂﬂl : 0.6246 0.65625 —0.520 0.128
z° = 0). Hence, the activity coefficient, of componentxin 0.6220 0.68750 —0.512 0.127
the mixture with composition,, is given by 0.6199 0.71875 —0.500 0.132
0.6174 0.75000 —0.496 0.134

N 4+ 2=1) pe—Bhoex 0.6154 0.78125 —0.485 0.134

o= ( i_ o) po —5 . (6) 0.6131 0.81250 —0.475 0.147

(Nz°© + 1) p° e Phheex 0.6106 0.84375 ~0.476 0.139

. 0.6085 0.87500 —0.456 0.144

Pl_ease note that, — 1 upon appr(_)achlng the referem_:e state 0.6061 0.90625 —0.457 0146
with z, — z°, and thaty,, > 1 indicate either weakening of 0.6039 0.93750 —0.442 0.155
intermolecular interactions and/or a decrease in volume. 0.6016 0.96875 —0.430 0.154
The Boltzmann terms in 6 were calculated by random  0:5995 1.00000 —0.424 0.162

Monte Carlo insertions of particles of typeand B into the
Conﬁgurations’ obtained from the MD simulations. In ordaer t TABLE |: Excess chgmical po_tentia,l@x,a and activitiesa, obtained for
perfor the numerical evaluation of the excess chemical paje LETA1ones TLIes i g, i - L ens:
tential contributions efficiently ,we have used an exclua®lel  according top* = Nogp/V. The data were obtained from the potential
ume map (EVM) [9], projecting the occupied volume onto adistribution theorem [2, 3].

grid of approximately.13 x o mesh-width. Distances smaller
than0.7 x o with respect to any LJ-molecule were neglected
and the corresponding teraxp(—5 AU, ) taken to be zero.
About 1000successfulnonzero) particle insertions were sam-

led f h f . 4 2500 f' ) In order to avoid the diverging behaviorat — 1, the cal-
pled for each configuration an configurations Were ang ation is started at finite concentrations 4f making use
alyzed for each composition.

of approaching Henry’s law, leading to, — x4 and thus
~va — 1. We will consider component4) as “solute” and
component B) as “solvent”. Consequently, we are taking the
pure liquid state of componen3) as a reference state for

. . . . both components. Since the data is available as discratized
Starting from the Gibbs-Duhem relation for a binary system : ) "
formation at fixed compositions,, ;, we have to perform the

Gibbs-Duhem integration

0= Nydus+ Npdugp , @) integration numerically, applying the recursion formula
we arrive at
rzadlnay = —zrgdlnag , (8) Inaa;t1 = Inaa,; +
by insertingz,, = N, /N and and the expressing the chemical (Inapit1 —Inap,)(zp: +rpi+1) (10)
potentials by their corresponding activities. Hence, ttieva TR+ TBi+1 — 2 ’

ity of componentA can be calculated by integrating activities
obtained form componer® following

dlnap . 9)

| T Recognizing thety — x4, for x4 — 0, we are starting the
dlnag = - 1—2p recursion atna s ; = Inz4 1, assumingy ; = 1.



L I I B L R L
p* B B,U‘A,ex B,U'B,ex o4 ,Ta) i 0.6 DL(bS ] 0.8
0.7897 0.00000 —2.493 0.605 08 e |
0.7850 0.03125 —2.488 0.582 i ° &w=200¢5 | [ 0.7
0.7802 0.06250 —2.456 0.544 <2 T w4l il
0.7754 0.09375 —2.414 0.534 20T 33 | o 2 07
0.7702 0.12500 —2.444 0.454 R o N S |
0.7652 0.15625 —2.418 0.428 r & o
0.7599 0.18750 —2.379 0.403 2t . 065
0.7548 0.21875 —2.363 0.410 - + 1
0.7492 0.25000 —2.351 0.362 24 R 0.6
0.7434 0.28125 —2.342 0.326 0 ‘0‘.2‘0‘.4‘0‘.6‘0‘.8‘ 1 0 02040608 1 0 ‘0‘.2‘0‘.4‘0‘.6‘0‘.8‘ 1
0.7379 0.31250 —2.320 0.311 Xg Xg Xg
0.7320 0.34375 —2.303 0.280
0.7263 0.37500 —2.273 0.256 FIG. 1: Excess chemical potentiajs.x of the componentsi (a) and B
0.7202 0.40625 —2.236 0.234 (b), as well as the corresponding densitigs= No%, 5 /V (c) for the LJ-
8;(1];1(1) gigg?g :;?ig 8;?3 g13<tur§;\ivithef?5/§33 = 1.33,andeg 4 /epp = 2.0, simulated af™ =
0.7018 0.50000 —2.151 0.187 van .
0.6954 0.53125 —2.122 0.168
0.6894 0.56250 —2.090 0.165 2
0.6828 0.59375 —2.039 0.161 1
0.6765 0.62500 —2.016 0.144 8
0.6702 0.65625 —1.967 0.142 11 16
0.6636 0.68750 —1.932 0.136
0.6571 0.71875 —1.883 0.127 1.4
0.6507 0.75000 —1.839 0.127 @ m
0.6440 0.78125 ~1.802 0.120 | b <12
0.6377 0.81250 —1.757 0.126 1
0.6311 0.84375 —1.711 0.131
0.6245 0.87500 —1.670 0.125 0.9 0.8
0.6181 0.90625 —1.610 0.130
0.6119 0.93750 —1.560 0.141 0.6
0.6054 0.96875 —1.510 0.151 0.8 Lyl ] 0.4 = Tl ]
0.5995 1.00000 — 1459 0.162 "0 02040608 1 0 02040608 1
XB XB

TABLE IlI: Excess chemical potentigls «,o and activitiesa, obtained for

the Lennard-Jones mixtures withy 4 = ogp, andegq = 2.0 X egp, FIG. 2: Comparison of the computed activity coefficients for the twitedi

simulated atl™ = 2.0 and P* = 1.755. The shown densities values are ent types of mixtures (244 = 1.33egp and (byaa = 2.0egp. Solid

according top* = No% 5 /V. The data were obtained from the potential Symbols: Activity coefficientsy4 and~g, calculated directly from the ex-

distribution theorem [2, 3]. cess chemical potentials of componedtand B in the mixture. Open Sym-
bols: Activity coefficientsy 4, computed fromy z, by numerically integrating
the Gibbs-Duhem relation.

Discussion
potential of componem is found to decreases monotonously.

Table I and Il contain the excess chemical potentials, caltiowever, the chemical potential of componéhhow passes
culated for the entire composition range of the two differ-a minimum already atp ~ 0.8 and is rapidly increasing
ent types of mixtures. The error is estimated to be abouthereafter, practically indicating a “squeezing out” tendy
4+0.3 in units of 3~1. A moderately increasing interaction ©f the B particles from the Typet solution.
strength of particles of typel, as shown for the case of  The directly calculated activity coefficients are shown in
eaa = 1.33 x xegp in Figures 1a and 1b, leads to a low- Figure 2. Please note that the activity coefficient for compo
ering of the excess chemical potential for both componentsient B in both mixtures increases withg — 0, although
In parallel, the density is found to increase, with incragsi the interaction strength increases. This again stronglynem
amount ofA, as shown in Figure 1c. Please note that chemsizes the importance (and sometimes perhaps dominance) of
ical potential of componenB passes through a shallow min- the effect of the volume changes [10].
imum atzp = 0.3, indicating that the decreasing amount of In Figure 2 the activity coefficients, of components4d
free volume in the dense solution witty — 0 creates an in- and B directly obtained from the potential distribution theo-
creasingly less attractive environment for comporigntiere,  rem are given by full symbols. In addition we also show the
the volume effect is apparently compensating, and finakinev activity coefficients of component as obtained by integrat-
overcompensating the at the same time strengthened attract ing the Gibbs-Duhem relation using the activity coefficgent
interactions. This behavior is found to be strongly amplifie of the counter componen8. The data shown in Figure 2
upon a further increase of interaction strength of padicle = demonstrates that the activity coefficients are satisfédyte-
for the mixtures withe 4 4 = 2.0 X egp. Again, the chemical covered, particularly when taking into account the retdsiv



large noise in the calculated excess chemical potentiaisrsh Deutsche Forschungsgemeinschaft (SPP 1155).

in Figure 1. Moreover, since our goal was just to demonstrate

the applicability of the procedure to molecular simulasipn

we didn't try possible further improvements of the predic-

tion, such as interpolation and/or fitting of the data. THa-re « Electronic addresadi et mar . paschek@do. edu
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