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We determine activity coefficients of both components of different binary Lennard-Jones mixtures obtained at
T ∗

= 2.0 andρ∗

= 0.6 by using two different strategies: (i) direct evaluation of the excess chemical potentials
of both components applying the potential distribution theorem , and (ii) usingthe Gibbs-Duhem integration
based on the activity coefficients of the counter-component, which was calculated directly from the potential
distribution theorem approach. Both methods lead numerically to similar results and therefore offer a route
to determine activity coefficients of mixtures large complex molecules by alternatively calculating chemical
potentials of potentially simpler counter-constituents.

Introduction

The Gibbs-Duhem integration technique represents a rather
familiar approach to determine activity coefficients of individ-
ual components in liquid mixtures [1]. The calculation is typ-
ically based on the measurement of partial pressures of one
or several components of the liquid mixture, exploiting the
fact that activities are related with respect to one anotherby
the Gibbs-Duhem relation. Hence, also activity coefficients
of components might be determined, which exhibit an almost
vanishing partial pressure, thus preventing any direct activ-
ity determination. Here we show that the Gibbs-Duhem in-
tegration strategy might be also applied to directly estimate
activity coefficients from computer simulations of complex
fluid mixtures. In perspective, activity coefficients of com-
ponents might be calculated, which could not be evaluated
directly otherwise, such as for large molecules like polymers
or proteins. For demonstration purposes we perform simu-
lations for a rather simplified example of fluid mixtures: a
binary Lennard-Jones mixture. Applying the potential distri-
bution theorem [2, 3], we calculate the excess chemical poten-
tial of both components for different compositions covering a
certain part of the composition range, and thus determine the
activity coefficients. In a second step we show that a similar
result might be obtained by Gibbs-Duhem integration of the
chemical potential of the corresponding counter-components.

Methods

Outline of the MD simulations

We perform molecular dynamics (MD) simulations of bi-
nary Lennard-Jones (LJ) mixtures consisting of 512 LJ-
particles with varying composition. The simulations were per-
formed under constant pressure and constant temperature con-
ditions using a Verlet integrator [4]. A reduced timestep of
δt∗ = 0.005 was applied in all cases. The Lennard-Jones in-
teractions were truncated at a cutoff distance ofRcut > 4σ.
An initial equilibration run of104 timesteps was followed by a
production run of5×105 timesteps, which was used for anal-

ysis. Long-range corrections for energy and pressure were ap-
plied. We employ the GROMACS simulation program for all
MD simulations [5]. The temperatures were fixed atT ∗ = 2.0
by using the Nośe-Hoover thermostat [6, 7] with a reduced
coupling time ofτ∗ = 0.5, and the Parrinello-Rahman baro-
stat with a reduced coupling time ofτ∗ = 1.0. Fixing the
system at a reduced pressure ofP ∗ = 1.755 is leading to a
reduced equilibrium density ofρ∗ = 0.599 for the pure LJ-
liquid (component B), matching exactly the data reported by
Johnson et al. [8]. Here we show simulation results of two
types of binary LJ mixtures with parameters ofσAA = σBB ,
and varying interaction strengths ofǫAA = 1.33 × ǫBB ,
and ǫAA = 2.00 × ǫBB . The A-B cross interactions were
obtained apply standard Lorentz-Berthelot mixing rules with
ǫAB = (ǫAA ǫBB)1/2. The simulations cover the entire com-
position range of both mixtures.

Activity coefficients from the potential distribution theorem

The chemical potential of a single componentα in a fluid
mixture is given according to

βµα = βµ◦

α + ln aα , (1)

whereβ = 1/kBT , aα is the activity, andµ◦

α represents the
chemical potential at the reference state. The activity is ex-
pressed asaα = γαxα, wherexα is the mole fraction of
componentα, andγα is the corresponding activity coefficient.
According to the potential distribution theorem [2, 3] (also
known as Widom particle insertion technique), the chemical
potential of the monoatomic componentα can be expressed
as

βµα = ln
∆(Nα, . . . , P, β)

∆(Nα + 1, . . . , P, β)

= ln
(Nα + 1)Λ3

α

〈V 〉
+ ln

〈V 〉

〈V e−β∆Uα〉
, (2)

where∆(. . .) is the isobar isothermal partition function, and
〈. . .〉 denotes isobar-isothermal averaving.Λα is the thermal
wavelength of particleα, V is the Volume andNα is the num-
ber of particlesα. ∆Uα is the energy of a virtual particle of
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typeα, randomly inserted to the system [2], leading to the ex-
cess chemical potential contribution with respect to the ideal
gas state of

−βµα,ex = ln [〈V exp(−β∆Uα)〉 / 〈V 〉] . (3)

Subtracting the chemical potential at the reference state “◦”,
and recognizing thatxα = Nα/N , we obtain

βµα − βµ◦

α = ln aα

= ln

[

(Nxα + 1)
〈

V e−β∆Uα

〉

xα=x◦

(Nx◦ + 1) 〈V e−β∆Uα〉xα

]

.(4)

aα might be also expressed in terms of the corresponding cal-
culated excess chemical potentals

aα =
(Nxα + 1) ρ e−βµ◦

α,ex

(Nx◦ + 1) ρ◦ e−βµα,ex

(5)

As reference state “◦”, we might either consider the pure liq-
uid (xα = x◦ = 1), or the state of infinite dilution (xα =
x◦ = 0). Hence, the activity coefficientγα of componentα in
the mixture with compositionxα is given by

γα =
(N + x−1

α ) ρ e−βµ◦

α,ex

(Nx◦ + 1) ρ◦ e−βµα,ex

. (6)

Please note thatγα → 1 upon approaching the reference state
with xα → x◦, and thatγα > 1 indicate either weakening of
intermolecular interactions and/or a decrease in volume.

The Boltzmann terms in 6 were calculated by random
Monte Carlo insertions of particles of typeA andB into the
configurations, obtained from the MD simulations. In order to
perform the numerical evaluation of the excess chemical po-
tential contributions efficiently ,we have used an excludedvol-
ume map (EVM) [9], projecting the occupied volume onto a
grid of approximately0.13×σ mesh-width. Distances smaller
than0.7 × σ with respect to any LJ-molecule were neglected
and the corresponding termexp(−β ∆Uα) taken to be zero.
About 1000successful(nonzero) particle insertions were sam-
pled for each configuration and 2500 configurations were an-
alyzed for each composition.

Gibbs-Duhem integration

Starting from the Gibbs-Duhem relation for a binary system

0 = NA dµA + NB dµB , (7)

we arrive at

xA d ln aA = −xB d ln aB , (8)

by insertingxα = Nα/N and and the expressing the chemical
potentials by their corresponding activities. Hence, the activ-
ity of componentA can be calculated by integrating activities
obtained form componentB following

∫

d ln aA = −

∫

xB

1 − xB
d ln aB . (9)

ρ∗ xB βµA,ex βµB,ex

0.6733 0.00000 −0.628 0.140
0.6709 0.03125 −0.634 0.132
0.6687 0.06250 −0.635 0.131
0.6661 0.09375 −0.638 0.123
0.6639 0.12500 −0.618 0.130
0.6616 0.15625 −0.619 0.132
0.6594 0.18750 −0.612 0.123
0.6567 0.21875 −0.605 0.126
0.6548 0.25000 −0.604 0.115
0.6525 0.28125 −0.595 0.121
0.6499 0.31250 −0.584 0.115
0.6477 0.34375 −0.589 0.123
0.6451 0.37500 −0.584 0.117
0.6432 0.40625 −0.568 0.126
0.6406 0.43750 −0.559 0.123
0.6382 0.46875 −0.553 0.123
0.6358 0.50000 −0.552 0.118
0.6336 0.53125 −0.548 0.118
0.6315 0.56250 −0.536 0.127
0.6290 0.59375 −0.531 0.124
0.6266 0.62500 −0.527 0.124
0.6246 0.65625 −0.520 0.128
0.6220 0.68750 −0.512 0.127
0.6199 0.71875 −0.500 0.132
0.6174 0.75000 −0.496 0.134
0.6154 0.78125 −0.485 0.134
0.6131 0.81250 −0.475 0.147
0.6106 0.84375 −0.476 0.139
0.6085 0.87500 −0.456 0.144
0.6061 0.90625 −0.457 0.146
0.6039 0.93750 −0.442 0.155
0.6016 0.96875 −0.430 0.154
0.5995 1.00000 −0.424 0.162

TABLE I: Excess chemical potentialsµex,α and activitiesaα obtained for
the Lennard-Jones mixtures withσAA = σBB , andǫAA = 1.33 × ǫBB ,
simulated atT ∗

= 2.0 andP ∗
= 1.755. The shown densities values are

according toρ∗ = NσBB/V . The data were obtained from the potential
distribution theorem [2, 3].

In order to avoid the diverging behavior atxA → 1, the cal-
culation is started at finite concentrations ofA, making use
of approaching Henry’s law, leading toaA → xA and thus
γA → 1. We will consider component (A) as “solute” and
component (B) as “solvent”. Consequently, we are taking the
pure liquid state of component (B) as a reference state for
both components. Since the data is available as discretizedin-
formation at fixed compositionsxα,i, we have to perform the
integration numerically, applying the recursion formula

ln aA,i+1 = ln aA,i +

(ln aB,i+1 − ln aB,i)(xB,i + xB,i+1)

xB,i + xB,i+1 − 2
.(10)

Recognizing theaA → xA, for xA → 0, we are starting the
recursion atln aA,1 = lnxA,1, assumingγA,1 = 1.



3

ρ∗ xB βµA,ex βµB,ex

0.7897 0.00000 −2.493 0.605
0.7850 0.03125 −2.488 0.582
0.7802 0.06250 −2.456 0.544
0.7754 0.09375 −2.414 0.534
0.7702 0.12500 −2.444 0.454
0.7652 0.15625 −2.418 0.428
0.7599 0.18750 −2.379 0.403
0.7548 0.21875 −2.363 0.410
0.7492 0.25000 −2.351 0.362
0.7434 0.28125 −2.342 0.326
0.7379 0.31250 −2.320 0.311
0.7320 0.34375 −2.303 0.280
0.7263 0.37500 −2.273 0.256
0.7202 0.40625 −2.236 0.234
0.7140 0.43750 −2.232 0.220
0.7081 0.46875 −2.175 0.213
0.7018 0.50000 −2.151 0.187
0.6954 0.53125 −2.122 0.168
0.6894 0.56250 −2.090 0.165
0.6828 0.59375 −2.039 0.161
0.6765 0.62500 −2.016 0.144
0.6702 0.65625 −1.967 0.142
0.6636 0.68750 −1.932 0.136
0.6571 0.71875 −1.883 0.127
0.6507 0.75000 −1.839 0.127
0.6440 0.78125 −1.802 0.120
0.6377 0.81250 −1.757 0.126
0.6311 0.84375 −1.711 0.131
0.6245 0.87500 −1.670 0.125
0.6181 0.90625 −1.610 0.130
0.6119 0.93750 −1.560 0.141
0.6054 0.96875 −1.510 0.151
0.5995 1.00000 −1.459 0.162

TABLE II: Excess chemical potentialsµex,α and activitiesaα obtained for
the Lennard-Jones mixtures withσAA = σBB , andǫAA = 2.0 × ǫBB ,
simulated atT ∗

= 2.0 andP ∗
= 1.755. The shown densities values are

according toρ∗ = Nσ3

BB/V . The data were obtained from the potential
distribution theorem [2, 3].

Discussion

Table I and II contain the excess chemical potentials, cal-
culated for the entire composition range of the two differ-
ent types of mixtures. The error is estimated to be about
±0.3 in units of β−1. A moderately increasing interaction
strength of particles of typeA, as shown for the case of
ǫAA = 1.33 × ×ǫBB in Figures 1a and 1b, leads to a low-
ering of the excess chemical potential for both components.
In parallel, the density is found to increase, with increasing
amount ofA, as shown in Figure 1c. Please note that chem-
ical potential of componentB passes through a shallow min-
imum atxB ≈ 0.3, indicating that the decreasing amount of
free volume in the dense solution withxB → 0 creates an in-
creasingly less attractive environment for componentB. Here,
the volume effect is apparently compensating, and finally even
overcompensating the at the same time strengthened attractive
interactions. This behavior is found to be strongly amplified,
upon a further increase of interaction strength of particles A
for the mixtures withǫAA = 2.0 × ǫBB . Again, the chemical
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FIG. 1: Excess chemical potentialsµex of the componentsA (a) andB
(b), as well as the corresponding densitiesρ∗ = Nσ3

BB/V (c) for the LJ-
mixtures withǫAA/ǫBB = 1.33, andǫAA/ǫBB = 2.0, simulated atT ∗

=

2.0 andP ∗
= 1.755.
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FIG. 2: Comparison of the computed activity coefficients for the two differ-
ent types of mixtures (a)ǫAA = 1.33ǫBB and (b)ǫAA = 2.0ǫBB . Solid
Symbols: Activity coefficientsγA andγB , calculated directly from the ex-
cess chemical potentials of componentsA andB in the mixture. Open Sym-
bols: Activity coefficientsγA, computed fromγB , by numerically integrating
the Gibbs-Duhem relation.

potential of componentA is found to decreases monotonously.
However, the chemical potential of componentB now passes
a minimum already atxB ≈ 0.8 and is rapidly increasing
thereafter, practically indicating a “squeezing out” tendency
of theB particles from the Type-A solution.

The directly calculated activity coefficients are shown in
Figure 2. Please note that the activity coefficient for compo-
nentB in both mixtures increases withxB → 0, although
the interaction strength increases. This again strongly empha-
sizes the importance (and sometimes perhaps dominance) of
the effect of the volume changes [10].

In Figure 2 the activity coefficientsγα of componentsA
andB directly obtained from the potential distribution theo-
rem are given by full symbols. In addition we also show the
activity coefficients of componentA as obtained by integrat-
ing the Gibbs-Duhem relation using the activity coefficients
of the counter componentB. The data shown in Figure 2
demonstrates that the activity coefficients are satisfactorily re-
covered, particularly when taking into account the relatively
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large noise in the calculated excess chemical potentials shown
in Figure 1. Moreover, since our goal was just to demonstrate
the applicability of the procedure to molecular simulations,
we didn’t try possible further improvements of theγA predic-
tion, such as interpolation and/or fitting of the data. The rela-
tively large scatter observed for the case ofǫAA = 1.33×ǫBB

at large values ofxA suggests that an increased accuracy of
µex particularly in the dilute regime ofA would be desirable.

Conclusion

We have determined the activity coefficients of both com-
ponents of binary Lennard-Jones mixtures obtained forT ∗ =
2.0 andρ∗ = 0.6. Reference activity coefficients were ob-
tained by direct evaluation of the excess chemical potentials of
both components applying the potential distribution theorem
[2]. In addition, applying a Gibbs-Duhem integration based
on the activity coefficients of the counter-component “B” (the
solvent), calculated directly via potential distributiontheorem,
we were also able to recover the activity coefficients of the
solvent. Both methods lead to very similar results. Therefore
we suggest to determine activity coefficients of mixtures large
complex molecules by alternatively calculating chemical po-
tentials of potentially simpler counter-constituents.
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