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We extend our work on aqueous solutions of poly(oxyethylene) oligomers H-(CH2-O-CH2)n-H (POEn).
On the basis of atomistic simulations of trimer and decamer solutions (first part of this series of papers),
different sets of coarse-grained implicit-solvent potentials have been constructed using the iterative Boltzmann
inversion technique. The comparison of structures obtained from coarse-grained simulations (gyration radii,
end-to-end distances, radial distribution functions) with atomistic reference simulations and experiments shows
that the state-specific potentials are transferable both to a wide concentration range, if the same molecule size
is considered, and to at least 2 orders of magnitude larger molecules (in terms of molecular mass). Comparing
the performance of different mesoscale potentials, we find different applicability ranges in terms of molecule
sizes. The experimental gyration radii for chains comprising up to 1500 monomers are reproduced almost
quantitatively by the decamer-fitted potentials with dihedral interactions included. The trimer-fitted potentials
reproduce experimental chain dimensions of up to some hundred monomers but seem to become metastable
beyond a certain chain length, as we evidenced some chain collapses. Relaxation of large-scale features is
1-2 orders of magnitude faster in the mesoscale simulations than in the atomistic simulations. The diffusion
behavior in dependence of concentration is captured correctly when the decamer potential is applied to the
decamer itself. For all other chain lengths, we find that time mapping from coarse-grained to atomistic
trajectories has to be determined separately for each concentration. Overall, diffusion is 1-2 orders of magnitude
faster on the mesoscale, depending considerably on the Lowe-Andersen thermostat parameters. The CG
simulations provide an overall speed-up of about 3 orders of magnitude.

1. Introduction

Although computer power is increasing at high speed,
standard atomistic molecular simulation techniques still suffer
from severe limitations of both accessible time and length scales.
This is especially relevant in the area of macromolecules such
as polymers, or biomolecules. Accordingly, efforts to circumvent
these limitations based on coarse-graining the atomistic model
onto a mesoscale one have recently been increased.1-6 Common
to different coarse-graining approaches is that a reduced number
of interaction centers in combination with “softer” or flattened-
out potentials7 as well as accelerated dynamics lead to significant
speed-ups, extending affordable system sizes and physical times.
Structural approaches aim at finding the effective potential that
reproduces the structural properties of a specific underlying
atomistically detailed system (either from simulation or experi-
ment), motivated by Henderson’s theorem that states that the
knowledge of the particle densities and all pair correlations in
a liquid uniquely fixes the multibody Hamiltonian of the
system.8Recently, this has been verified numerically for three
popular spherically symmetrical pair potentials.9 Some closely
related methods for structural coarse-graining exist, consisting
essentially of an iterative sequence of mesoscale simulations
with (a) trial potential(s) corrected in each step. The iteration
finally leads to the convergence of the actual structure toward
its target function. The potential correction step may consist of
a simplex3,4 optimization, of the solution of a set of linear

equations involving the actual and target function(s) (inverse
Monte Carlo)10 or of the application of a term that involves the
ratio of actual and target function to determine the potential
correction numerically (reverse Monte Carlo and Boltzmann
inversion).11-13 Apart from these, there are different methods,
e.g., based on the solution of the Ornstein-Zernike equation14-16

or a force-matching method recently proposed by Izvekov and
Voth.17 In this work, we apply the so-called iterative Boltzmann
inversion method.12,13 This technique has successfully been
applied to polymer melts18,19 and solutions1,4,12,13 as well as to
low-molecular species.14,20 It is conceptually simple, allows any
type and number of distribution function as input, and converges
relatively fast. Here, we focus on its application to aqueous
solutions of poly(oxyethylene) and its oligomers as a test case,
thereby extending our atomistic modeling work21,22 to the
mesoscale. The scope of this work is to explore the capability
of the coarse-grained potentials derived at one specific state point
in describing structure at both different concentrations and for
longer polymer chains and to compare the static and dynamical
properties of potentials that were fitted to different molecular
sizes. Transferability to longer chains of coarse-grained poten-
tials fitted to small analogues has successfully been demonstrated
for some cases,4,18 but focus was either on melts or very diluted
solutions and only limited attempts were made to explore
transferability in solutions, both to larger molecule size and
different concentrations. We are aware of two coarse-grained
potentials for POE, an analytical coarse-grained model23 fitted
to a melt of POE30 and an implicit-solvent numerical coarse-
grained model for aqueous POE solutions,5 which was presented
recently and used in simulations of poly(oxyethylene)-poly-
(oxypropylene) triblock copolymer micelles in water. The
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authors made no systematic effort to validate its transferability
to longer chains.

The outline of the paper is as follows: After presenting
simulation details of the mesoscale simulation techniques we
used, we shortly discuss our implementation of the iterative
Boltzmann inversion. In the results section, we first compare
the different sets of coarse-grained potentials we fitted. We then
explore the trimer potential transferability in terms of both
concentration and molecule size by comparison of atomistic and
mesoscale simulation results, before we continue with an
assessment of the applicability of three different potential sets
to polymer solutions of considerably higher molar mass,
including a short discussion of relaxation features on both scales.
Finally, we examine in brief the influence of the thermostat on
diffusion and the time mapping from the mesoscale back to the
atomistic scale.

2. Methods

2.1. Atomistic Simulations. The methods used for atomistic
simulations were decribed in the first part of this publication.21,22

All results that served for comparison with mesoscale simula-
tions were generated using the TIP4P-Ew water model24 and
the TraPPE-UA with modified dihedral parameters21 (see first
part of this series of publications). Some details of the atomistic
reference simulations are summed up in Table 1.

2.2. Mesoscale Simulations. The simulations of the coarse-
grained systems were performed using a modified version of
the MD code MOSCITO25 that uses numerical potentials for
all types of inter- and intramolecular interactions: nonbonded,
bond stretches, bond bending, and dihedrals. The potentials and
forces are tabulated in equidistant intervals of distances or
angles. Forces and potentials are interpolated using the
Newton-Gregory interpolation scheme, and equations of mo-
tions are integrated applying the Leap-frog algorithm. All
simulations were performed in the NVT ensemble at 298 K
using an orthorhombic box employing periodic boundary
conditions. No electrostatics is present in the mesoscale simula-
tions. A cutoff of 1 nm was applied for all mesoscale
simulations. Cutoff corrections were obsolete, because all
tabulated potentials were forced to have zero values at distances
larger than the cutoff. A Verlet-type neighbor list for the
nonbonded interactions was applied, constructed by a linked-
cell algorithm26 with a neighbor list cutoff 1 Å larger than the
nonbonded interactions cutoff. The temperature was imposed
by a Lowe-Andersen thermostat,27 which used a second list
of neighboring pairs within the thermostat cutoff. Both lists were
updated automatically depending on the displacement of the
particles. Time steps ranged from 1 to 5 fs.

Lowe-Andersen Thermostat. This thermostat was originally
proposed as an alternative to dissipative particle dynamics but
is suitable for MD simulations as well. It is similar to the
Andersen thermostat28 that also assigns random velocities drawn
from a Maxwell-Boltzmann distribution, but the Lowe-Ander-
sen thermostat works on the component of the relatiVe Velocity

parallel to the line of centers of the particles, instead of working
on absolute velocities. It is applied after each integration step
of the equation of motion. There are two thermostat parameters
to fix: the thermostat radius RT and the “bath collision
probability” Γ dt. Only pairs of particles within this distance
RT of each other are considered for possible collisions, while
the bath collision probability Γ dt (between 0 and 1, where 1
corresponds to colliding every particle in every step) decides
about the actual collision itself. Within the algorithm, all pairs
of particles within RT are considered sequentially and the
postcollisional new relative velocity is drawn from a Maxwellian
distribution corresponding to the desired temperature. For details
of the implementation, see the papers by Lowe et al.27,29 We
consider it ideally suited for implicit-solvent mesoscale simula-
tions, because it samples the canonical ensemble, it ensures good
temperature control up to very big time steps, and it additionally
mimics the effect of collisions between solute molecules and
the omitted solvent particles. Thus, it maintains liquidlike
hydrodynamic conditions at particle densities that refer to a
gaslike state. The viscosity of the “solution” depends on the
thermostat parameters and increases drastically with increasing
collision radius and collision frequency. This additional friction
effect should therefore be minimized. The time-step dependence
of temperature or equilibrium properties is negligible,29,30 and
a slow-down of diffusion as encountered with the Andersen
thermostat can be prevented in small-molecule systems by the
use of low thermostatting rates, as shown by Koopman and
Lowe.29 It turns out, however, that diffusion in the polymer
systems considered here is affected very much by the collision
frequency (see below). Two different strategies can be applied
to fix the thermostat parameters. One approach, recently
proposed by Lowe and Koopman,29 aims at minimizing the
collision radius while the collision probability is 1. This
corresponds to a rather realistic picture where neighboring
particles are collided each time they get very close to each other.
This radius is in principle easy to find for potentials with well-
defined hard sphere radii like Lennard-Jones potentials. It is
however not obvious how to fix such a minimal collision radius
in simulations with oscillatory potential, and for low-density
systems, this may result in too small collision numbers as
molecule encounters get scarce, corresponding to gaslike
conditions. We therefore adopted a second, more pragmatic
approach: we set the collision radius to a higher value and sought
the appropriate low number of collisions necessary for accept-
able temperature control. RT was generally set to be equal or
greater than the nonbonded potential cutoff radius (10-20 Å).
For good temperature control, collision frequencies had to be
between approximately three to five collisions per femtosecond.

2.3. Constructing Coarse-Grained Potentials by Iterative
Boltzmann Inversion. We constructed our set of potentials by
applying the so-called iterative Boltzmann inversion (IBI)
method of Müller-Plathe et al.13 The method essentially consists
of three steps: (a) performing an atomistic simulation to create
the particles’ trajectories from which target function(s) can be

TABLE 1: Simulation Details of Atomistic Reference Simulations and Mesoscopic Simulations That Were Used to Fit the
Respective Coarse-Grained Potentials

nPOE nwater box (nm) T (K) P (bar) F (kg m-3) simulated time (ns)

Trimer Potential Set
atomistic reference 128 1036 3.91 298 1.0 1006.4 ( 5 14 ns
mesoscopic fit 128 3.91 298 (NVT) 484 1-10 ns per iteration step

Decamer (Both Potential Sets)
atomistic reference 16 418 2.84 298 1.0 1058.9 ( 8 60 ns
mesoscopic fit 16 2.84 298 (NVT) 484 1-10 ns per iteration step
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extracted afterward; (b) choosing how to group together atoms
from the detailed level onto the mesoscale level (i.e., mapping)
and extraction of the coarse-grained topologies and target
functions; (c) performing the actual iteration by repeatedly
simulating the system in its mesoscale representation and
evaluating the functions of interest. After each iteration loop,
the potential(s) 1,..., n are corrected according to the formula

Ptgt
j (x) denotes the target distribution for the jth potential, Pi

j(x)
denotes the jth distribution function resulting after iteration loop
i and from the use of the actual potential Ui

j(x). Pj(x) has to be
replaced by the appropriate distribution function of the inde-
pendent coordinate x, either a distance or an angle. Each
distribution function Pj(x) is uniquely associated to one potential
Uj(x). Nonbonded potentials between specific sites A-B are
associated with the corresponding radial distribution function
gA-B(r). Bond, angle, or dihedral potentials are accordingly
associated with the appropriate bond length, bond-bending angle,
or dihedral angle distribution functions P(l), P(�ijk), or P(�ijkl),
respectively. The iteration is stopped when an appropriate
convergence criterion is met. The potentials resulting from this
procedure are tabulated. To start the iteration cycle, one has to
specify a starting potential. In principle, the choice is arbitrary,
but an obvious choice is either a simple Lennard-Jones potential
or the potential of mean force (PMF). For the different potential
types, the PMF can directly be calculated from the target
functions as

for nonbonded, bond-bending, bond-stretching, and dihedral

interaction potentials, respectively.12,13

As described by Reith,12 it is useful to start with a potential
as short-ranged as possible to accelerate iteration. Hence, for
the nonbonded potential, we used a truncated potential of mean
force after its attractive short-ranged part. We thus used the
inherent information of the target distribution and kept the
starting potential as short-ranged as possible at the same time.
For bond, angle, and dihedral potentials, the potentials as
calculated by eqs 3-5 were used. First, the exclusively
intramolecular potentials for bonds and bends were iterated,
before we turned to the nonbonded potential. All distribution
functions and potentials were smoothed by simple running
averages of 3-7 points. To ensure that both nonbonded
potentials and forces vanish to zero at the cutoff, we multiplied
the force and the potential with a hyperbolic tangent tapering
function that smoothly approaches zero. Each iteration step
consisted of several equilibration runs until the total energy and
the pressure of the system did not deviate more than 1% from
their running averages and subsequent production runs of

typically some nanoseconds. We required that the total energy,
the pressure, and the distribution functions of interest be
converged before continuing with the next potential correction.
Energy and pressure evaluated from subsequent runs did not
differ more than 1% and the structural distribution functions
evaluated and averaged from evenly spaced parts of the
trajectories had typical average relative deviations of less than
1%.

3. Results and Discussion

3.1. Mesoscale Models for Aqueous Poly(oxyethylene)
Solutions. To derive a coarse-grained potential for poly(oxy-
ethylene), we first had to choose the mapping scheme. To
preserve enough detail of each chemical moiety, we decided to
apply a rather low level of coarsening, mapping the repeat unit
-CH2-O-CH2- containing three united atoms onto one
coarse-grained “EO” site. Several studies suggest that using
rather small degrees of coarsening leads to better potential
transferability to temperature19,20,31 or chain length.11 Other
choices would have been possible, e.g., taking each glycol unit
-CH2-CH2-O- as a new center. However, taking this “EO”
site seemed the most natural choice, as it preserves symmetry
and it results in only one type of nonbonded interaction with a
not too complicated radial distribution function. Chain end sites
were treated as being identical in interaction but having a
different mass due to the three hydrogens. To derive the target
functions, atomistic coordinates were mapped onto coarse-
grained ones by taking the center of mass of each repeat unit
(see Figure 1). The smallest POE oligomer with all intramo-
lecular interactions present on the atomistic scale is dimethoxy-
ethane (DME). In the coarse-grained picture, using the men-
tioned mapping scheme, the smallest molecule with all
intramolecular interactions present is the tetramer. To keep
things simple first, as it was not known a priori if a dihedral
interaction is necessary for longer molecules, we first took the
trimer H[-CH2-O-CH2]3-H as a starting point for the
potential iteration, because it incorporates bonds and bends.

Potentials Based on the Trimer. The distance, bond, and
angle distributions between the EO coordinates at the intermedi-
ate concentration xPOE3 ) 0.11 were taken as target functions.
Details of the atomistic and mesoscale simulation can be found
in Table 1. The intramolecular bond-stretching and bond-
bending potentials model interactions between two and three

Ui+1
j (x) ) Ui

j(x) + RT ln
Pi

j(x)

Ptgt
j (x)

j ) 1,..., n (1)

UPMF,nb(r) ) RT ln gtgt(r) (2)

UPMF,ang(�) ) RT ln
Ptgt(�)

sin �
(3)

UPMF,bd(r) ) RT ln Ptgt(r) (4)

UPMF,dihed(�) ) RT ln Ptgt(�) (5)

Figure 1. Applied mapping scheme for poly(oxyethylene) water
solutions. The atomistic representation (a) is mapped onto its coarse-
grained implicit-solvent counterpart (b) by assigning the mesoscale
group “EO” to the center of mass of each [H2C-O-CH2] repeat unit
([H3C-O-CH2] unit at molecule ends).
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sequential EO sites, respectively, while the nonbonded potential
only describes intermolecular interactions. Within simulations
of longer molecules (see section 3.3), the same potential was
also used to describe intramolecular nonbonded interactions
between sites separated by more than two bonds. In order to
get the set of potentials, we proceeded as described by Reith et
al.13 and fitted the different potential contributions in the order
of their (assumed) relative strengths:

The underlying assumption is that the intramolecular, bonded
interactions can be considered relatively independent from the
nonbonded ones. The bond length distribution for EO-EO
quickly converged to the target value after a few iterations. The
angle distribution of three successive EO sites could also be
reproduced very well after only a few iterations. Then, we turned
to the nonbonded potential between EO sites. Starting with the
potential of mean force, truncated after the first minimum, the
target function was reproduced almost perfectly after ap-
proximately 10 iterations. Because of slight deviations in the
bond and angle distributions, we repeated the iteration of all
three potentials in the same order for some steps. The resulting
angle and bond length histograms are shown in Figure 2, and
the radial distribution target function together with the final result
from iteration is shown in Figure 3. The match is very good,
with the largest deviation of g(r) being less than 0.01 at every
distance and less than 1% for the bond or angle distribution.

Deviations become larger beyond the potential cutoff but are
still below 1%. The corresponding intermolecular EO-EO
nonbonded potential is shown in Figure 4 (full line). The
structure of the potential is complex, showing a primary
minimum around 4.8 Å, a small very weakly repulsive region
and a second very shallow minimum at larger separations. As
the choice of cutoff for the mesoscale potentials is in principle
arbitrary, we simply kept the atomistic cutoff. A longer cutoff
might have been necessary if the target distribution function
had included more long-scale features, because only features
of the distribution function within the cutoff influence the
potentials via eq 1. A comparison of Figures 3 and 4 shows
that, for the trimer, the maxima and minima of the radial
distribution function (rdf) roughly correspond to minima and
maxima in the potential.

Potentials based on the Decamer. We constructed two other
sets of potentials based on target functions from the decamer.
The first set consists of three potentials (bonds, bends, non-
bonded) and does not incorporate an explicit dihedral interac-
tion; the 1-4 interactions are simply modeled using the
nonbonded potential. The second set of decamer potentials does
incorporate dihedral interactions to describe 1-4 interactions.
We decided to parametrize a dihedral potential, because
simulations with the 1-4 interactions modeled by the non-
bonded potential produced a rather flat dihedral angle distribu-
tion with slightly more trans than gauche conformations
(compare Figure 6, upper panel), while in atomistic simulations,
the EO units take on mainly gauche conformations (compare
Figures 2c and 6, lower panel). Both decamer potentials were
fitted to target distributions extracted from atomistic simulations
at the same mass density of POE as the trimer potentials, F )

Figure 2. Histograms of intramolecular degrees of freedom between the monomers for the poly(ethyleneoxide) trimer and decamer in water at
wPOE ) 0.48. The symbols denote the target distributions extracted from atomistic simulations using the modified TraPPE-UA force field;21 the
lines show the final trial distributions from Boltzmann iteration using coarse-grained molecular dynamics simulations. (a) Bond distance distribution
between two neighboring EO sites (squares, trimer; circles, decamer). (b) Angle distribution between three joint EO sites (squares, trimer; circles,
decamer) site. (c) Dihedral angle distribution between four joint EO sites (circles, decamer potential fit).

Figure 3. Intermolecular radial distribution functions between me-
soscale ethylene oxide (EO) units in aqueous solution. The lines denote
final radial distribution functions from Boltzmann iteration potential
fits (lines for decamer fits with and without dihedrals are virtually
indistinguishable). Circles correspond to the target function for POE3

and squares to the target function for POE10. Both at wPOE ) 0.48 (FPOE

) 484 kg/m3). Both targets are from atomistic trajectories at 298 K
and 1 bar. Mapping as depicted in Figure 1.

Ustretch f Ubend f Unonbonded

Figure 4. Final nonbonded potentials between mesoscale interaction
sites “EO” from Boltzmann iteration (cutoff 1 nm). Full line, POE3 fit;
broken line, POE10 fit without dihedral potential; dotted line, POE10 fit
using an additional dihedral potential. Both at wPOE3 ) 0.48 (FPOE )
484 kg/m3). Mesoscale sites were mapped as described in Figure 1.
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484 kg/m3 (molar concentration xPOE10 ) 0.037). Simulation
details can be found in Table 1.

Both bond length and angle distributions are rather similar
for the trimer and decamer (compare Figure 2). Each coarse-
grained angle comprises six connected atomistic dihedrals and
hence represents the average conformations of these dihedrals.
The angle distributions being similar reflect the similarity of
the underlying atomistic conformations of triads of EO units in
either the trimer or decamer. Nevertheless, to include the subtle
differences, we refitted all potentials for the decamer in the same
order as described above for the trimer. The POE10 potential of
mean force is completely repulsive, which makes it difficult to
use it as a starting point for the iteration: a very repulsive region
leads to near-zero values of the trial g(r) at small distances,
which in turn makes the potential correction in this region ill-
defined. Therefore, we started again with the short-ranged PMF
of POE3. Both bond and angle distributions converged within
two to four iteration cycles. After fitting the nonbonded potential,
we repeated the consecutive fitting in the order bond f angle
f nonbonded (f dihedral) potential, because the fit of
intramolecular distributions had slightly worsened. For the
second decamer potential set, the above-mentioned sequence
was repeated using the first set of decamer potentials. We used
the dihedral PMF (eq 5) as a first guess for the dihedral potential.
The target dihedral angle distribution and the final fitting result
are depicted in Figure 2c. The final set of potentials could
simultaneously represent the bond, angle, and dihedral distribu-
tions (Figure 2) and the radial distribution function (Figure 3)
of the decamer very well. All nonbonded potentials for both
the decamer and trimer are presented in Figure 4.

The decamer potentials are similar to the POE3 potential but
show some important differences: a less attractive first minimum
at short distances, shifted to smaller distances, and a completely
repulsive region (potential without dihedral interactions) for
distances greater than approximately 6 Å. This reflects the
differences found in the g(r) of the decamer and trimer (compare
Figure 3). The decamer rdf indicates that there are less close
contacts among the monomers than in the trimer solution. This
effect is modeled in the decamer potentials via the more
repulsive midrange region. Although the nearest neighbor
minimum corresponds to the first maximum in the target
function like in the trimer potential, the structure at longer
distance shows no easily interpretable one-to-one correspon-
dence any more. Both our trimer and decamer potentials
resemble the 12-mer potential of Bedrov et al.,5 which was also
obtained by iterative Boltzmann inversion. Their potential is
very similar to our decamer potential which incorporates the
1-4 dihedral interactions, as both include a slightly attractive
tail again at larger distances. Their target functions were
extracted from atomistic simulations of POE12 chains in TIP4P
water at w ) 0.52 (x ) 0.035). Our decamer target function
(Figure 3) looks rather similar to their 12-mer target function.
The minor differences in the potentials could be attributed to
differences between the target distributions as well as to minor
differences in the iteration procedure. The deviations among
the mesoscopic distributions can be traced back to differences
between the underlying atomistic force field. They produce
different conformer populations, as shown by us in the first part
of this series of papers.21,22

3.2. Applicability of the Trimer Potentials to Different
Concentrations. The trimer potential was fitted at one specific
state point, namely 298 K, 1 bar, and xPOE3 ) 0.11. It is often
assumed that there is a very limited transferability in concentra-
tion for mesoscale potentials. To examine to what extent the

radial distribution functions at both higher and lower concentra-
tions could be reproduced, we compared distribution functions
from mesoscale simulations with their corresponding atomistic
counterparts. Before comparison, the atomistic trajectories have
been mapped onto the coarse-grained representation by assigning
the actual center-of-mass positions of each [CH2-O-CH2]
group to the “EO” sites for each frame and distribution functions
have been calculated afterward. Figure 5 shows radial distribu-
tion functions from both CG simulations and atomistic simula-
tions at varying molar POE3 concentrations between 0.05 and
0.36 (mass concentrations 0.15-0.81). For the CG simulations,
we used the average volume and the molecule numbers from
the atomistic simulations to represent the respective concentra-
tion. The CG potential reproduces the structure in terms of the
g(r) between ethylene oxide sites at different concentrations
rather well. Close to the fit concentration (w ) 0.48), the local
structure is reproduced very faithfully, and the same is true in
the more concentrated system w ) 0.81. Additional test
simulations at lower concentrations indicated that, for w e 0.09,
the mesoscale potential leads to more pronounced deviations
from the atomistic structure with too high first and second
maxima (not shown), which could be explained by a clustering
of the molecules. This clustering probably indicates that
transferability to very diluted systems is smaller than to more
concentrated solutions. The results suggest that the CG potential
transferability is greater than commonly assumed. This is,
however, obviously very much dependent on the mixture under

Figure 5. Radial distribution functions at different concentrations
between EO sites from atomistic and coarse-grained simulations of
POE3 in water using the potentials (see Figure 4) adjusted to reproduce
the structure at 298 K, 1 bar, and wPOE3 ) 0.48. Symbols denote results
from atomistic simulations, and lines display results from mesoscale
simulations. Concentrations: wPOE3 ) 0.15 (red)/0.48 (green)/0.66 (blue)/
0.81 (black).

Figure 6. Distribution of dihedral angles from atomistic and mesoscale
simulations (FPOE ) 484 kg/m3) with 1-4 interactions modeled either
using the nonbonded potentials or using a dihedral potential (fitted to
atomistic decamer simulation at FPOE ) 484 kg/m3). Upper panel: POE10

simulations using the trimer potentials (stars) and the decamer potentials
(squares), both without dihedral potential. Lower panel: results from
CG simulations of POE10 (open circles) and POE20 (filled circles)
compared to distributions from atomistic simulations (full line, POE10;
broken line, POE20).
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consideration, on the adequacy of the chosen mapping scheme,
and on the chosen reference state to which the potentials are
fitted. Silbermann et al.14 compared implicit-solvent potentials
generated from different concentrations of ethanol in water and
found that the potentials were very concentration-dependent.
An explanation for our good transferability may be that we
preserve more of the identity of chemical groups, while
Silbermann et al. mapped entire molecules onto one coarse-
grained site. Transferability can only be expected if the
molecules can rearrange their local structure, which is impossible
if all internal degrees of freedom are omitted. A limited
concentration transferability was also observed by Reith for PVA
in hexane.12

3.3. Transferability of Mesoscale Potentials to Longer
Chain Molecules. Dense Structures. In order to further explore
the transferability of both sets of mesoscale potentials in terms
of molecule size, the same long-chain systems we had simulated
in atomistic detail before21 were now simulated using the
mesoscale representation for direct comparison. We conducted
NVT simulations at 298 K using the average box sizes of the
atomistic NPT simulations and arbitrarily chosen snapshots from
the atomistic simulations’ trajectories, which were mapped onto
the mesoscale representation and subsequently taken as starting
structures. Additionally, simulations of longer chains with n )
40, 100, and 200 without atomistic reference data were
performed for comparison with experimental data. As there were
no atomistic reference simulations, the structures could not be
extracted the same way as in the simulations for 3-30
monomers; we chose to fix the POE mass density at 484 kg/m3

for comparison, which is the same as in the atomistic reference
simulation of the trimer (molar concentration x ) 0.11). These
long-chain structures were generated by (a) construction of
several separate single-chain structures in elongated conforma-
tions, (b) short equilibration runs for the isolated chains, and
(c) combination of several single-molecule structures from
different simulations into one box. The box size was adjusted
to the desired monomer density afterward. In some cases, this
procedure had to be repeated until an appropriate structure with
not too many overlaps was found. Alternatively, to reach a
feasible starting point for simulation of these dense structures,
and as decorrelation and dynamics was very slow for the high-
density structures (mass density of POE alone FPOE ≈ 484 kg/
m3 refers to a higher “real” density because of the left-out
waters, see next section), we first carried out simulations at half
the POE density FPOE ≈ 240 kg/m3 and took snapshots from
these simulations with adjusted boxes to start simulations of
the denser systems.

Relaxation of Large-Scale Features. In order to both evaluate
the speed-up of relaxation features compared to atomistic
simulations and check if the long-scale features we wanted to
compare could be decorrelated within simulation, we calculated
the end-to-end-vector autocorrelation functions for the coarse-
grained simulations. Figure 7 shows results for simulations with
the trimer potential set (all POE mass densities at 484 kg/m3

identical to atomistic reference simulations, except for 100-mer
at 240 kg/m3) and for the atomistic simulations. The CG
simulation curves could be fitted to (stretched) exponential
functions given by

τend denotes the autocorrelation time and � the stretching
exponent. The smaller oligomers’ decorrelation curves could
be fitted to purely exponential functions, while, for 30 and more
monomers, a stretched exponential was more appropriate.
Decorrelation of the end-to-end-vectors of the 100- and 200-
mers at the higher density of 484 kg/m3 was not complete after
250 ns, which prompted us to simulate at half the density as
well. At 240 kg/m3, the 100-mer could be decorrelated when a
low collision rate (5 fs-1) was employed (compare Figure 7),
which was still not the case for the 200-mer. Figure 8 shows
results using the two sets of decamer potentials for 100-mer
(lower panel) and 200-mer (upper panel). The curves with the
same thermostat parameters (Γ ) 5 fs-1, Rth ) 1 nm) in Figures
7 and 8 can directly be compared. First, we note that the
decorrelation is significantly slower for the decamer set without
dihedral interactions (full symbols) than for the set that
incorporates those interactions (open symbols). As the dihedral
potential favors gauche-like conformations (compare Figure 6)
where the beads approach closer, this may lead to more frequent
close contacts and corresponding higher forces and acceleration..
The 200-mer now can also be completely decorrelated, while
it stays trapped in its initial state for a long time when using
the trimer potentials. Second, we note that these comparisons
are only valid for the same set of thermostat parameters, since
increasing thermostat collisions slow down reorientation very
much. This is exemplified by the curves for the 100-mer using
either 5 or 10 collisions per femtosecond in Figure 8. On the
other hand, the collisions have to be above a certain threshold
(mostly 2-5 fs-1) for sufficient temperature control.

In order to compare the relaxation behavior of the various
simulations, the correlation time τcor has been calculated by
integrating the autocorrelation function P(t) over time:

Figure 7. Orientational autocorrelation function of unit vectors parallel to the vectors connecting the chain ends from (a) atomistic and (b) mesoscale
simulations (trimer potentials) of poly(oxyethylene) in water for different polymer chain lengths at 298 K. Full lines denote simulation results;
broken lines are exponential fits (a) and stretched exponential fits (b) of the curves. (a) Number of monomers are 10 (red), 12 (green), 20 (black),
and 30 (blue). (b) Number of monomers are 10 (red), 20 (black), 30 (green), and 100 (blue). Lowe thermostat bath collision frequency of 5 fs-1

and thermostat radius of 10 Å. All simulations at a POE density of FPOE ) 484 kg/m3, except for the 100-mer at FPOE ) 240 kg/m3.

P(t) ) exp(-(t/τend)
�) (6)
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τcor is identical to τend for the exponential decay. Figure 9 shows
a compilation of characteristic correlation times evaluated from
eq 7 for the atomistic as well as different CG simulations. The
data have been regressed by power fits, with exponents as
indicated in the caption. The correlation times for atomistic
simulations21,22 are at least 1 order of magnitude larger for all
monomer numbers than those from CG simulations. Among the
coarse-grained potential sets, the decamer potential with dihedral
potential permits the fastest relaxation, followed by the decamer
potential without dihedrals and the trimer potential. The latter
two behave very similarly. The dependency on chain length is
less pronounced for the CG potentials than in atomistic
simulations (∼n1.85). This means that the larger the molecules,
the more advantageous is the use of the CG potentials compared
to atomistic simulations, since the factor τat/τCG will grow with
growing chain length.

Comparison with Atomistic and Experimental Data. Figure
10a shows a comparison of chain dimensions in terms of the
radii of gyration and end-to-end distances from coarse-grained
simulations with the three sets of potentials compared to the
corresponding atomistic simulation data. The error associated
with the radii of gyration and end-to-end distances from the
mesoscopic simulations is approximately 0.3 and 0.7 nm,
respectively. In order to make a proper comparison between
atomistic and mesoscopic simulations, we first mapped the
atomistic trajectory coordinates onto the corresponding EO sites
as described above. Then, these pseudomesoscopic trajectories
were evaluated. The absolute differences between atomistic radii
of gyration directly evaluated from the unaltered atomistic
trajectories and those calculated after mapping are small (order
of magnitude 1 Å), but not accounting for this would lead to
significant relative deviations of approximately 25% for the
trimer and still 3% for the 30-mer, decreasing with molecule
length. The “original” values from atomistic simulations without
mapping are greater, because on average the atomistic sites are
further apart than the centers of the corresponding “EO” group.
As Figure 10 demonstrates, the gyration radii from atomistic
simulations are very well reproduced for 3-30 monomers by
the trimer potentials at the examined (relatively concentrated)
state points. An origin of the slight overestimation of the end-

to-end distances might be the missing dihedral interactions
(instead, the 1-4 interactions are modeled using the nonbonded
potential). Comparing with atomistic gyration radii for 10-30
monomers, both sets of decamer potentials perform comparably
well. The deviation for the end-to-end distance is larger without
the dihedral potential. While the distribution functions of angles
and distances are all in good agreement with their atomistic
references, the dihedral distribution for both the decamer

Figure 8. Orientational autocorrelation function of end-to-end vectors
from implicit-solVent mesoscale simulations of poly(oxyethylene) in
water for oligomers of 100 and 200 monomers. Simulations at 298 K
and FPOE ) 240 kg/m3 employing the decamer-fitted potentials and using
a thermostat radius of RT ) 1 nm. Full symbols, decamer potentials
without dihedral interactions; open symbols, decamer potentials includ-
ing dihedral interactions. Lower panel: 100-mer, collision frequency
of Γ ) 5 fs-1 (blue symbols) or Γ ) 10 fs-1 (red symbols). Upper
panel: 200-mer, Γ ) 5 fs-1. Lines are stretched exponential fits to the
data.

τcor ) ∫0

∞
P(t) dt (7)

Figure 9. End-to-end-vector correlation times (eq 7) in dependence
of monomer numbers for poly(oxyethylene) in water. Circles, atomistic
simulations; green diamonds, CG simulations with trimer potential; blue
triangles down, CG simulations with decamer potential without
dihedrals; red triangles up, CG simulations with decamer potential
including a dihedral potential. Simulations at 298 K and FPOE ) 484
kg/m3 (240 kg/m3 for CG simulations with n > 20) using a thermostat
radius of RT ) 1 nm and collision frequency of 5 fs-1. Lines show
regression curves τcor ∼ np for n g 10, with p ) 1.85/1.46/1.69/1.25
(atomistic/trimer/decamer/decamer potentials with dihedrals).

Figure 10. Dependence of radius of gyration RG (circles) and end-
to-end distance RE (diamonds) on chain length for poly(oxyethylene)
in water at 298 K and 1 bar. (a) RG and RE from atomistic simulations
(blue symbols with line) compared to coarse-grained simulations with
implicit-solvent potentials, employing trimer-fitted potentials (green
symbols) and decamer-fitted potentials without dihedral interactions
(red symbols) and decamer-fitted potentials including dihedral interac-
tions (gray symbols). (b) RG from coarse-grained simulations compared
to values calculated by extrapolation of experimental data32 (line). The
key to the symbols is the same as in part a. All simulations and potential
fits at a POE mass density of FPOE ) 484 kg/m3, except for 100-mer
and 200-mer simulations (240 kg/m3). Each monomer consists of one
repeat unit CH2-O-CH2.
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potential without explicit dihedral interaction and for the trimer
potentials is not (compare Figure 6). The wrong dihedral
distribution leads to too extended structures with too many trans
configurations. That is the reason why the decamer potential
without dihedral interactions leads to too large chain structures.
Both RG and RE of the decamer itself are reproduced perfectly
by the decamer potential fit including dihedrals, but RE is
overestimated by both the trimer and the decamer potentials
without dihedrals. All presented radii of gyration and end-to-
end distances were evaluated from the trajectories after equili-
bration and after total reorientation of the end-to-end vectors,
leading to 70-600 ns of simulation for the 100-mer and 200-
mer. The respective converged values of different simulation
runs, employing different thermostat parameters and/or different
starting structures differed by up to 20% for the 100/200-mer.
Hence, these values might be subject to a larger error because
of less very slow convergence. We omitted the results of the
higher density structures in Figure 10, because they did not
depart very much from their initial values within simulations.
Because of this slow decorrelation observed at the dense
structures, transferability of the potentials to still bigger
molecules could only be tested by simulation of isolated chains
(for detailed analysis, see below).

Simultaneous Concentration and Chain Length Extrapola-
tion. We have already shown continued applicability of the
coarse-grained trimer potentials (for g(r)) within a limited
concentration range, keeping the chain length at the same value
as in the fit (section 3.2), and for a change in chain length,
keeping the (monomer) concentration constant or at half the
original value (last section). A third way of testing the potential
applicability is to apply a simultaneous change in both (mono-
mer) concentration and chain length. Figure 11 shows radii of
gyration from atomistic and mesoscopic simulations using the
trimer potentials and from simulations using the decamer-fitted
potentials including dihedral potential versus mass concentration
POE3 to POE30. The dependency on concentration is very weak
for all examined polymer lengths. The mesoscopic potentials
work very well over the examined concentration range (which
translates into a density range in the implicit-solvent description)
between 10 and 80 mass percent of polymer; i.e., the absolute
values of radii of gyration are well reproduced, and the potentials
do not show any artifacts like chain collapse. The decamer
potentials can reproduce the gyration radii of 10-mer and 20-
mer more closely than the trimer potentials. This is far more
than what would be expected from a state-dependent implicit-
solvent potential, where a certain (fixed) amount of solvent
molecules per polymer molecule is implicitly present.

Single-Chain Simulations. As the examinations of relaxation
behavior have shown, molecular dynamics simulations of still

longer chains than presented above (>200) are only feasible for
low-density structures or isolated chains. Hence, to explore
further the validity of the potentials, we complemented our
analysis with single-molecule simulations for polymer chains
between 100 and 1500 monomers (442.3-66050 g/mol).
Simulations were performed for 100-500 ns of CG time at a
time step of 5 fs and collision frequencies between 5 and 20
fs-1, using thermostat radii between 1 and 2 nm. Starting
structures were either elongated chains or random coils, gener-
ated using the equilibrium angles and bond lengths of the
atomistic model. These results can directly be compared to
experimental data by Kawaguchi et al.32 covering the range from
6000 to 1.1 × 107 g/mol. All chain lengths could be decorrelated
within 10-50 ns of simulation using the decamer potentials
and within similar times for the trimer potentials. However, as
equilibration of chain dimensions was in general slower than
reorientation, convergence had to be determined separately by
inspection of the temporal evolution of gyration radii. Figure
12 shows a compilation of radius of gyration data from atomistic
and coarse-grained simulations using the trimer potentials (a)
and the two sets of decamer potentials (b) along with experi-
mental data from three different sources. The estimated error
associated with the reported values from block averaging of
individual runs is (0.66 nm for the end-to-end distance and
(0.18 nm for the radius of gyration for the 1500-mer; the
estimated relative error for all chains is around (1.8%. The
error estimate from combining several independent simulation
runs is about 5-10% for the decamer potentials. The values
for the 100-mer and 200-mer in Figure 12b have a larger scatter,
because they include results from both denser systems and single
chains. The scatter in the trimer potential results (Figure 12a)
for more than 200 monomers is considerably larger. However,
taking all results from different (3-10) individual runs together,
the experimental values are within the error bars (with exception
of the 400-mer). This scatter is the result of an artifact occurring
in simulation: the chains either showed a chain collapse into a
dense structure, or they stayed fluctuating around a solvated
state with a gyration radius close to the experimental one.
Starting from an elongated configuration, the chains either
collapsed to the more dense structure or remained in the solvated
more extended structure. The collapsed structure was mostly
approached rather gradually, and fluctuations were smaller in
these structures. As the equilibration took very long in some
cases (up to 120 ns for the 1500-mer), it might not always have
been completed. The different outcomes of individual simula-
tions are probably due to subtle differences in the preparation
of starting structures as well as in the collision numbers the
chains underwent. We could not find any systematic dependence
on the thermostat parameters for the chain dimensions.
Once the structure was collapsed, the chains stayed in this dense
conformation using the trimer potentials. When taking this
structure and simulating it using the decamer potentials, the
solvated chain dimension was retained. The bimodal distribution
of gyration radii has some similarity with a phase change, and
this artifact could indicate some kind of metastability of the
trimer potentials for more than 200 monomers. Similar structural
artifacts were observed upon attempting the transfer of Boltz-
mann iterated potentials of a small glass-former to a temperature
far below the state point they were fitted at.20 For POE, it is
plausible that the excluded volume effect of solvent molecules
or neighboring monomers is captured better by the decamer
potentials, both with and without explicit consideration of 1-4
interactions, because of its more repulsive character at inter-
mediate distances (cf. Figure 4). This repulsive region is far

Figure 11. Concentration dependency of radius of gyration of POEn

with n ) 3, 5, 10, 12, 20, and 30 repeat units. Atomistic simulations
(lines) compared to simulations with trimer-fitted potentials (full
symbols) and simulations with decamer-fitted potentials including
dihedral interactions (open symbols).
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less pronounced in the trimer potential and seems to be
compensated by the second minimum. To corroborate this
assumption, additional simulations were performed with a
manually modified version of the trimer potential, truncated at
about 0.75 nm. This potential always led to chain conformations
without collapse, approaching the experimental values even for
the 600-mer. Hence, the double-well feature might be the origin
of this metastability. In not too diluted systems, its attractive
character is outweighed by more excluded volume interactions
and neighbor collisions. Further support for this explanation
comes from our finding that the chain collapse does not occur
in simulations of the 400-mer with four molecules instead of
one molecule. The reproduction of experimental data for chain
lengths between 200 and 1500 monomers is satisfactory for the
decamer potential without dihedral interactions. The incorpora-
tion of dihedral interactions improves the agreement. Fitting
the CG simulation results of 100-1500 monomers gives a
scaling law of RG (nm) ) 0.065216M W

0.50 for the decamer
potential without dihedrals and of RG (nm) ) 0.032556MW

0.537

with dihedral interactions included. The latter compares favor-
ably with the reported scaling law of RG (nm) ) 0.0202MW

0.55

from ref 32. The 10-mer potential set with dihedral interactions
is more appropriate for longer chains because of its built-in
excluded volume interaction and the correct representation of
1-4 correlations. Summing up, both trimer and decamer
potential sets can be used successfully to simulate 100- to 150-
fold longer polymer molecules than those used for the fit.

These extrapolation factors are on the same order as found
for poly(acrylic acid) in water4 and considerably higher than
most reported values for dilute polymer solutions and melts,
e.g., polyisoprene (factor of approximately 12)33 or PVA in
hexane (factor of 6-15).12 This could be due to our relatively
“well-behaved” potentials; Reith12 applied a more complicatedly
shaped multiwell potential for PVA with many wells and
maxima, which may amplify its state dependency.

Dynamics of Coarse-Grained Wersus Atomistic Simulations.
The main advantage of coarse-graining is the direct (technical)
speed-up (i.e., the CPU time we need for simulation of the same
system in the coarse-grained vs atomistic representation),
resulting mostly from smaller interaction site numbers and
inexpensive calculations due to left-out electrostatics, and the
indirect speed-up7 in terms of faster sampling of configuration
space. The latter results from flattening out of the system’s
potential surface. The molecules are less frequently trapped in
local potential minima because interactions are softer and less

far-ranging. As fast degrees of freedom have been removed,
local rearrangement is also faster. To estimate this indirect
speed-up, defined as R ) tat/tCG, we compare the long-time
diffusion behavior at both levels of detail. Scaling the nominal
time tCG from CG simulations such that the resulting long-time
diffusion behavior coincides with that of the atomistic simulation
at time tat gives an estimate of the speed-up factor R.

It has been shown for ideal model oligomers that the
Lowe-Andersen thermostat influences the absolute value of
diffusion coefficients, but it does not alter its dependence on
chain length (the dynamical scaling).34 We examined its
influence on the diffusion for POE10 to POE30, using the different
decamer potentials. Figure 13 shows the compilation of these
data for Rth ) 1 nm and 298 K at constant polymer mass density
(FPOE ) 484 kg/m3) over the collision frequency. Nearly all
data fall on the same curve Dselfnmono ) const., which shows
that the diffusion of mesoscopic oligomer chains follows the
Rouse model, which is normally applied to unentangled polymer
melts but not to solutions.35 The influence of hydrodynamic
interactions on the dynamics is thus not captured correctly by
the coarse-grained model, where the solvent molecules are no
longer present. On the other hand, the scaling of relaxation times
as τend ∼ N1.25, ... , 0.1.69 (compare Figure 9) is closer to Θ-solvent
behavior than to melt behavior. The correct scaling of static
properties (gyration radii, end-to-end distance) shows that the
effect of solvent molecules on static properties is however
captured correctly. The least-squares fit of diffusion coefficients
(shown as a line in Figure 13) gives a power dependency on

Figure 12. Radius of gyration RG for poly(oxyethylene) in water at 298 K and 1 bar. Results from atomistic simulations (squares), experimental
data for dilute concentrations and Mw > 6000 g/mol (stars,32 triangles down,39 triangles up40 [30 °C]) and coarse-grained molecular dynamics
simulations. (a) Employing the trimer-derived potentials (circles, error bars indicate the range of values from minimum to maximum) and (b)
employing the decamer-derived potentials without dihedral interactions (diamonds) or with dihedral interactions (circles). Error bars mostly within
symbol size. Compilation of data from isolated chain simulations (100-1500 monomers, collision frequency of 5 fs-1) and simulations at FPOE )
484 or 240 kg/m3 (3-200 monomers). Error bars for less than 100 monomers are smaller than symbol size. The lines are least-squares fits to the
atomistic simulation (N ) 3,..., 30) with exponent 0.752 and to the CG simulation with decamer-derived potentials for N ) 200,..., 1500, with
scaling exponents of 0.537 and 0.50 (with and without dihedrals, respectively).

Figure 13. Dependence of the absolute diffusion coefficients in coarse-
grained simulations on the Lowe-Andersen thermostat collision
frequency (thermostat collision radius: 1 nm). We show a compilation
of data Dself × nmonomer for POE10, POE20, and POE30 at wPOE ) 0.48
and 298 K, comprising simulations using the decamer potentials with
dihedrals (filled symbols) and without dihedrals (open symbols). The
line shows a least-squares fit to the data.

Modeling of Aqueous Poly(oxyethylene) Solutions J. Phys. Chem. B, Vol. 112, No. 43, 2008 13569



the collision frequency Γ as Dselfnmono ) 2.39Γ-0.6. The same
strong dependency applies in turn for the speed-up. Hence, it
is obvious that the dynamics of the CG simulations, differently
from the static properties, depend very much on the thermostat
parameters, whose influence is by far more important than the
details of the potential. For small molecules, the thermostat
influence may be smaller, as shown by Koopman and Lowe29

for a dense LJ system; they found an only marginally reduced
diffusion for low collision frequencies. This is most probably
due to the larger thermostat radius we use here. For 5 collisions
per femtosecond and Rth ) 1 nm, we find approximate speed-
up factors of 100 for the 10-mer, between 20 and 150 for the
20-mer, and approximately 25 for the 30-mer for the observed
concentrations (compare Figure 14). For polymer melts, the
authors of ref 23 found a unique speed-up of 53 for different
chain lengths of 50-300 atoms for PE. They assumed that the
same be valid for a POE melt, applying a coarsening level of 6
(our coarsening level is 3, i.e., three atomic sites in one CG
site). However, the situation becomes less evident for simula-
tions of polymer solutions. Here, the speed-up depends not only
on chain length (and thermostat parameters in our case) but also
on concentration. To exemplify the complex concentration
dependency of diffusion in the CG simulations, we present in
Figure 14 self-diffusion coefficients of POE10 and POE20

evaluated from atomistic and coarse-grained simulations (using
the 10-mer potentials with dihedrals). CG diffusion coefficients
are presented as evaluated from simulation (filled symbols) and
after scaling with different indicated factors (open symbols),
which were chosen to match CG and atomistic data either in
the low or in the high concentration region. First, we note that,
surprisingly, the concentration dependency is correctly captured
for the decamer. A unique speed-up of approximately 100
applies at all examined concentrations for the applied thermostat
parameters. For the 20-mer, this is only valid within the
concentration region below x ) 0.018 (which has the same
monomer molar fraction as the potential fit). For higher
concentrated systems, the speed-up factor increases, due to the
stronger slowing of atomistic diffusion compared to the meso-
scopic diffusion. The complex dependency on concentration of
POE diffusion in atomistic simulations21,22 originates not only
from excluded volume interactions but also from solvent-specific
interactions, which obviously cannot be represented in every
(nonisotropic) detail within the implicit-solvent potential. The
larger speed-up found for more dense systems may be an
additional inherent advantage of the coarse-graining approach
for POE if the focus is on static properties, as this extends the
time scale in reach just within that region where it is needed
the most. On the basis of our examinations, the speed-up must

be determined separately for each concentration and thermostat
parameter set if dynamic properties are to be derived from
simulation, as the concentration dependency is not necessarily
the same in atomistic and mesoscopic simulations. Evaluating
the transferability of two sets of coarse-grained polymer
potentials over temperature, Carbone et al. found that the speed-
up decreased with increasing temperature, originating from
different dependencies of diffusion on temperature on the
atomistic and mesoscale.19 They found comparable speed-ups
as we did of 1-2 orders of magnitude. The same tendency was
found by the authors of ref 20. Assuming that the lowest speed-
up found (20 of the low-concentrated 20-mer) applies to longer
chain lengths as well, the CG simulations we performed would
refer to the physical time scale of some microseconds. Even
longer times of some 10 µs would result from the speed-up
factors observed for the 10-mer. The total speed-up in terms of
CPU time per physical time unit is on the order of 1000,
depending mainly on concentration and number of left-out
interaction sites.

Summary

We evaluated in detail the transferability of coarse-grained
potentials to both longer chain lengths and different concentra-
tions. Three different sets of tabulated implicit-solvent coarse-
grained potentials for POE in water were constructed using the
iterative Boltzmann inversion technique in combination with
coarse-grained molecular dynamics simulations. The target
functions for the fit were extracted from atomistic simulations
of (a) the trimer POE3 (H[CH2-O-CH2]3H) and (b) the
decamer POE10 (H[CH2-O-CH2]10H) in water at one inter-
mediate concentration. The trimer was chosen, as it is the
smallest analogue that incorporates all intramolecular interac-
tions (except torsions) on the coarser level, and the decamer,
as it better incorporates the chain character. Radii of gyration
from coarse-grained simulations were compared to (a) extensive
atomistic simulations of POE in TIP4P-Ew water and (b)
experiments. Both potential sets could similarly well reproduce
the atomistic radii of gyration (3-30 monomers) without explicit
dihedral interactions. Experimental data for considerably greater
molar masses of 150-fold larger poly(oxyethylene) chains than
in the 10-mer fit (molecular mass 6.6 × 104 g/mol) could be
reproduced semiquantitatively by the decamer potentials, si-
multaneously reproducing the correct scaling behavior. Its
transferability could substantially be improved by the incorpora-
tion of a dihedral potential, which led to an almost quantitative
reproduction of the experimental scaling law for RG. The trimer
potentials fitted to a dilute solution were applicable to higher

Figure 14. Self-diffusion coefficients of (a) POE10 and (b) POE20 at different concentrations as evaluated from atomistic (circles, designated
“atomistic”) and coarse-grained (filled squares, designated “CG”) simulations (potential set without dihedrals; thermostat parameters: Rth ) 1 nm
and collision frequency 5 fs-1). The additional curves with open symbols show the original CG diffusion coefficients divided by the indicated
numbers to match the atomistic diffusion coefficient at lower or higher concentrations.
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concentrations and to a lesser extent to more diluted solutions.
Compared to the decamer potentials, the transferability of the
trimer potentials seemed to be restricted to the range of 3-200
monomers. Simulations of larger molecules resulted in part in
collapsed states, indicating a possible metastable behavior of
the trimer potential. Thus, for the examined implicit-solvent POE
models, the transfer of oligomer-fitted potentials to considerably
(about 2 orders of magnitude) larger molecules is possible and
yields almost quantitative structural agreement with experiments.
The observation of chain collapse in some cases indicates,
however, the existence of possible pitfalls. From comparisons
of reorientations of end-to-end vectors and diffusion within
the different models, we find a considerable acceleration using
the coarse-grained potentials, which is however different for
the different potential sets, all using the same coarse-graining
level. The speed-up factor of DCG/Dat is independent of
concentration for the decamer simulated with optimized decamer-
fitted potentials. It is dependent on concentration for all other
considered chain lengths. The parameters of the Lowe-Andersen
thermostat influence the absolute diffusion coefficients very
much, but all oligomer simulations of 10-30 monomers at
constant mass density show qualitatively the same behavior,
with an ideal reciprocal dependency of diffusion coefficients
on the number of monomers. Hence, the absolute speed-up is
dependent on concentration, chain length, and thermostat
parameters and ranges from 1-2 orders of magnitude.

Among the proposed potentials, the decamer-fitted set of
potentials including dihedrals seems to be the most suitable for
simulations of very large molecules as well as dense systems,
since it performs best in reproducing atomistic and experimental
structures, and it leads to the fastest decorrelation of end-to-
end vectors among the assessed potentials. This set of potentials
can be used to efficiently study structural or association
equilibrium properties of large molecules built from POE units
on the mesoscale. An important limit of our approach is that it
cannot be used to study dynamical properties of large molecules
quantitatively, due to the multifaceted dependencies of coarse-
grained dynamics as explained above. Second, as our potentials
are fitted to structure only, they cannot be expected to reproduce
solution thermodynamics quantitatively. However, they can be
used as very efficient means of speeding up the traveling through
phase space to equilibrate and advance in time large atomistic
structures. The mesoscale structures can be back-mapped5,36,37

to the atomistic scale and then used for detailed atomistic
simulations, or direct multiscale simulations38 can be performed.
Trajectories can then be evaluated for any thermodynamic or
structural property of interest like solubility or interactions with
specific substrates.
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