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Abstract— A simple algorithm for the calculation of the volume 
and surface area of a union of spheres of different radii is 
presented. It is based on the ideas published in S.Sastry et al, 
Phys.Rev.E, v.56, pp.5524-5532, 1997 [1], where they computed 
volume and surface of interatomic voids in simple liquids. 
They proposed to work with the intersection of Delaunay 
simplexes and the corresponding Voronoi polyhedra. 
Analytical formulas for volume and surface area were derived 
for the atoms occupying this region. This could be achieved 
without explicit calculation of multiple intersections of the 
overlapping atoms. We have implemented such ideas for the 
calculation of the occupied volume and its surface inside the 
polyhedra defined by power Voronoi diagram. This allows 
calculating the required values for spheres with different radii. 
Simple analytical formulas are also valid in this case. We 
applied our algorithm to the calculation of the solvation shell 
volume for complex solute molecules in molecular dynamics 
models of solutions. A comparison of our program with the 
available implementation of the certified algorithm for unions 
of spheres by F.Cazals et al. (ACM Trans. Math. Soft. 38 (1), 
2011) [2] shows coincidence of the results. 

Index terms— Power Voronoi diagram, solvation shell, 
solvent accessible surface, union of balls. 

I.  INTRODUCTION 
Volume and surface of a union of overlapping spheres is 

of interest for many applications. One of the best known is 
the calculation of volume and surface of molecules in 
chemistry and molecular biology [3, 4]. Any molecule can be 
approximated as an aggregate of spherical atoms with given 
van der Waals radii. These spheres overlap because chemical 
bonds between neighbor atoms are shorter than the sum of 
the radii. Another problem is the calculation of volume and 
surface of voids between atoms. In this case the union of the 
surrounding atoms determines the empty space between 
them [1,5]. An important field of research is the investigation 
of solvation shells in solutions. Of particular interest is the so 
called solvent accessible surface (SAS). The area of this 
surface and the enclosed volume are calculated for the union 
of spheres, which are centered on the atoms of the solute 
molecule and have radii given by the sum of the atomic van 
der Waals radius and the radius of the solvent molecule. 
Traditionally, the solvation shell is similarly constructed, but 

the outer surface lies at some additional distance radius R, 
representing the width of the shell [6-8]. 

The problems discussed can be solved by different 
methods. There are approaches which are based on Monte 
Carlo or lattice methods [9-11]. Others utilize analytical 
calculations [12-17]. A recently rather popular method used 
inclusion-exclusion formulae combined with Delaunay 
simplexes to reduce the complexity of calculating the 
intersections of overlapping spheres [18-20]. Some of the 
approaches do not compute the intersections of spheres at all, 
in particular [1,2]. 

Sastry et al. calculated the volume of voids in simple 
(monatomic) liquids [1]. Such voids can be represented by 
Delaunay simplexes. It leads to the problem of finding the 
empty (or occupied) volume inside Delaunay simplexes. 
They suggest to involve Voronoi polyhedra, and examine the 
intersection of each simplex with the Voronoi polyhedra of 
its constituent atoms, i.e. which define the vertices of the 
simplex. A property of such an intersection is that it 
“belongs” to the Voronoi polyhedron of this atom only. This 
means that, if the intersection contains a free volume, i.e. 
which is not covered by the atom, then this volume is not 
covered by any other atom too. Thus, finding an empty 
volume in this intersection, we can attribute it to one definite 
atom. This intersection has a rather complicated shape, 
therefore it was proposed to divide it into six triangular 
pyramids (subsimplexes) [1]. Explicit formulas for the 
occupied volume can be derived for each of these pyramids. 
Seemingly, a simple summation over these pyramids gives 
the desired volume. However, as it was noted, the 
subsimplexes can be overlapping in some cases. This occurs 
because the center of the Delaunay simplex (the common 
Voronoi vertex) lies sometimes outside the simplex interior. 
A rule of signs has been proposed to avoid this problem. 
Some of the subsimplexes were marked by a negative sign, 
thus the contribution of overlapping subsimplexes can be 
compensated and the total value becomes correct. 

Another complexity of working with simplexes is related 
with the fact that extraneous atoms, i.e. atoms which are not 
the vertices of the simplex, can intrude into the simplex. The 
occupied volume of the simplex, calculated without 
considering the extraneous atoms will be underestimated. 
However, the occupied volume of the neighboring simplex, 
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where this atom is belonging to, will be overestimated by the 
same amount. As a result, the total occupied volume of a 
cluster of Delaunay simplexes, which represent a void, will 
be calculated correctly [1]. On the other hand, the extraneous 
atoms present a serious problem for the calculation of the 
occupied volume, if we like to calculate it for single 
Delaunay simplexes. 

If Delaunay simplexes per se are not important for the 
study, then the ideas proposed in [1] can be realized in a 
different way. It is possible to calculate the occupied volume 
inside a Voronoi region without using Delaunay simplexes 
explicitly. From the definition of a Voronoi region follows, 
that the interior points cannot be covered by other atoms, if 
they are not covered by the central one. Thus, if we want to 
calculate the occupied volume inside a Voronoi region, we 
can deal with the sole atom, which is related to this 
polyhedron. Of course, other atoms can intrude partly into a 
given Voronoi region, but in this case their volumes are 
covered by the central atom, Fig. 1 and Fig. 2. 

 

 
Figure 1.  Two-dimensional illustration of the power Voronoi diagram of a 
union of disks. To find the occupied volume inside a given polyhedron, we 

just need to consider only its central atom (shaded disk). Nearby atoms 
extending into this polyhedron do not contribute to this volume, because 

they are covered by the central atom. 

 

 
Figure 2.  Illustration of a situation, when the center of an atom lies 

outside of its power Voronoi polyhedron (shaded). The free volume inside 
this polyhedron is also not accessible for other atoms. 

When we are dealing with atoms (spheres) of different 
radii, we have to use either Voronoi S-cells, where the 

distance to an atom is measured to the nearest point on its 
surface (additively weighted Voronoi cells) [21,22], or 
power Voronoi polyhedra, where the distance to an atom is 
“the power” of a given point, i.e. its distance, measured 
along the tangent line [23,24]. In principle, both types of the 
Voronoi diagram can be used for the given problem. 
However the last one is preferable. The explicit formulas for 
the computation of the occupied volume can be easily 
obtained, because the power Voronoi cells have plane faces. 

Note, both for ordinary Voronoi diagrams, defined for a 
system of atomic centers, and for additively weighted 
Voronoi diagrams, the center of an atom is always located 
inside its Voronoi cell. However, for power Voronoi 
diagrams it is possible that the center can be outside its cell 
[23-24], see Fig. 2. This fact is not very significant to the 
concept of the algorithm, but should be taken into account at 
the implementation, see below. 

The idea to use power Voronoi diagrams for the given 
problem, was successfully implemented in [2]. However, 
these authors calculate the occupied volume and the surface 
by a method, which differs from the one discussed here. 

This paper presents our solution of the problem of union 
of spheres. Our algorithm uses simple analytical formulas for 
the calculations and can be easily implemented. Testing of 
the algorithm shows that it is fast and robust. 

II. MAIN TOPICS OF THE ALGORITHM 

A. Partitioning of a polyhedron into triangular pyramids 
To calculate the occupied volume inside a power 

Voronoi polyhedron, we divide it into elementary triangular 
pyramids, Fig. 3. The common vertex of all these pyramids 
is the center of the atom of this polyhedron (point A). The 
bases of the pyramids lie on the faces of the polyhedron. The 
first vertex on the base (point B) is the point of intersection 
of the perpendicular from point A to the plane of a given 
face. The second vertex of the base (point E) is defined by 
the intersection of the perpendicular from point B to one of 
the edges of the face (or to its continuation). The third vertex 
of the base (point V) is one of the two polyhedron vertices 
which lie on the edge, used to construct point E. One can 
easily ascertain that these elementary pyramids are exactly 
Sastry’s subsimplexes [1]. The only difference: instead of 
Delaunay simplexes we really use here simplexes which are 
dual to the power Voronoi tessellation. 

Each vertex V of a polyhedron is the common vertex of 
six elementary pyramids. Each face contains two such 
pyramids, and three faces of the polyhedron are incident to a 
given vertex. The total number of pyramids inside a 
polyhedron can differ. It depends on the number of vertices 
of the polyhedron. Note that the Delaunay simplexes are 
divided always into the same number of subsimplexes [1]. 
This is because a simplex has only four vertices. 

Fig. 4 illustrates the partitioning of the Voronoi polygon 
into the required pyramids (triangles in this case). One of the 
triangles (ABV) is shaded. The base of the triangle is defined 
by points B and V. The first one is the projection of point A 
to a given edge of the polygon. The point V is one of the 
vertices lying on this edge. Each vertex of the polygon 
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belongs to two triangles. Note, in this example the triangles 
do not intersect with each other and do not extend beyond 
the polygon. Thus the total occupied volume inside the 
polygon can be calculated as a simple summation of the 
occupied volume of each triangle. This situation is typical for 
physical atomic systems, unfortunately it does not cover all 
possibilities (see below). 

 

 
Figure 3.  An elementary triangular pyramid of the partitioning of a 

polyhedron. Vertex A is the center of the atom of this given polyhedron. 
Point B is the foot of the perpendicular from point A to the plane of one of 
the faces. Point E is the foot of the perpendicular from point B to one of the 
edges (or its continuation) of this face. Point V is one of the vertices of the 

polyhedron at this edge. 

 

 
Figure 4.  Partitioning of a polygon into the elementary triangles. 

Common vertex of all triangles is the center of the atom of this polygon 
(point A). The edge AB of the triangle is a perpendicular from A to one of 
the polygon edges. The triangle edge BV connects point B with one of the 

vertices (point V), lying on a given polygon edge. 

B. Formulas for occupied volume and surface area inside 
the elementary triangular pyramid 
By construction, the triangular pyramids have one right 

dihedral angle (between faces ABE and BEV, Fig. 3), and 
additionally two right angles between edges AB and BE, and 
also BE and EV. As it was mentioned, our pyramids are 
similar to the subsimplexes used in [1]. Thus it is not 
surprising that the formulas for the occupied volume and its 
surface area inside our pyramids are identical to the formulas 
given in [1], in spite that they used ordinary Voronoi cells 
and atoms of the same radius. 

In this paper we keep the basic notation used in [1], but 
write these formulas in a shorter way. Let us denote the 
lengths of the edges of a triangular pyramid as x0, y0, z0, then 
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occupied volume and the area of the spherical surface section 
in the pyramid depends on which edges of the pyramid are 
intersected by the surface of the sphere (atom) with radius rC. 
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area (A8) in [1] contained an error, which we have corrected 
here. 

 

C. Rule of signs for summation of the pyramids. 
Fig. 5 demonstrates a situation where the base of a 

perpendicular (point B12) is located outside the polygon 
border (outside the edge V1V2). This point defines two 
triangles: AB12V1 and AB12V2. The first one is completely 
covered by the second one and is partly overlapped by the 
triangle AB51V1. This means that the sum of the occupied 
atomic volumes over all triangles will include the occupied 
volume inside triangle AB12V1 three times. In order to 
calculate the total volume correctly, we propose to use the 
contribution of this triangle with a minus sign. In this case, 
the sum volume will be correct. The determination of the 
triangle’s sign depends on the position of point В with 
respect to the vertices of the polygon edge. It is considered 
positive (with a plus sign) if point B belongs to a given 
polygon edge, i.e. positioned between its vertices. If point B 
lies on the continuation of the edge, there are two 
possibilities. The first one is realized for the triangle AB12V2. 
In this case both point В12 and the edge V1V2 are located on 
the same side relative to the used vertex V2 and the 
contribution of the triangle is considered positive. The 
second possibility is implemented in the triangle AB12V1: 
point В12 and the edge V1V2 are located on the opposite sides 
of the used vertex V1. In this case the contribution of the 
triangle will be recorded with a minus sign. Formally the 
triangles can be characterized by a factor SB, which is equal 
to 1 or −1. 

 

 
Figure 5.  Partitioning of the polygon into triangles, when the foot of the 

perpendicular from point A to a given polygon edge lies outside of the 
polygon (point B12). In this case the triangle AB12V1 overlaps with 

neighboring triangles AB12V2 and AB51V1. In the summation over the 
triangles, the volume of the atom inside the triangle AB12V1 is counted three 

times. Taking into account the negative contribution of triangle AB12V1 
gives us the correct result. 

A power polyhedron that does not contain the center of 
its atom (see Fig. 2) can also be divided into triangular 
pyramids according to our rules. However, in this case some 
pyramids are also overlapping. It is easy to formulate for this 
case the rule of signs by using an additional factor SA. If the 
center of the atom and its polyhedron lie on the same side 
relative to the plane of the face, on which the perpendicular 
is dropped, then SA = 1, otherwise SA = -1. Fig. 6 illustrates 
this situation. The center of the atom (point A) is located 
outside of its polyhedron. For triangles AB12V1 and AB12V2 
the factor SA = -1, because the point A and the polyhedron lie 
on opposite sides of the edge V1V2. For all other triangles 
SA = 1. In the summation of the occupied volumes of all 
triangles, the volume located outside the polyhedron is 
counted twice, since the triangles AB12V1 and AB12V2 
intersect in this area with all the others. However, the 
opposite signs of the volumes will lead to zero contribution 
outside the polyhedron. 

 

 
Figure 6.  Partition of the polygon into triangles when the center of atom A 

lies outside its polygon. Occupied volume of the triangles AB12V1 and 
AB12V2 intersects with the occupied volume of the other triangles. The first 

triangle pair is used with minus sign and all the rest with plus sign. 
Summation over all triangles yields the occupied volume only inside the 

polyhedron. 

In general, the factor SA should be introduced for all 
polyhedra, including those in which the center of the atom is 
inside the polyhedron. In this case SA = 1 for each pyramid, 
which corresponds to the rule proposed above. Note that SB 
and SA are used as multipliers, i.e. when both factors are 
negative the final sign of such triangle will be positive. 

In the three-dimensional case (for a three-dimensional 
pyramid) the rule of signs is complemented by one more 
factor SE, because now we have to take into account the 
position of point E, Fig. 3. The rules for point E are similar 
to those considered in Fig. 5 for point B in the two-
dimensional case. Thus if point E lies on the edge of the 
polyhedron, then SE = 1. If point E lies on the continuation of 
the edge on the same side as the edge according to vertex V, 
then SE = 1, otherwise SE = -1. The sign for the summation of 
the occupied volume or its surface area is determined as the 
product of all factors: SA·SB·SE. 

III. IMPLEMENTATION OF THE ALGORITHM 
In the first step, the power Voronoi diagram should be 

calculated for the studied union of spheres (atoms). This is a 
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routine procedure, all theoretical aspects of this diagram 
have been treated in the last century, see in particular [22-
25], and there are many available programs for its 
calculation.  

It is important for our algorithm that each sphere of the 
studied union should have a completely constructed power 
Voronoi polyhedron. This can be met for molecules inside a 
solution, which are surrounded by solvent atoms. However if 
we work with an isolated molecule, extra atoms should be 
added in the surroundings to avoid “unclosed” Voronoi cells 
for atoms at the surface of the molecule. The extra atoms 
should have zero radii to avoid any contribution to the 
occupied volume, and should be used for the calculation of 
the power Voronoi diagram of the studied union, Fig. 7. 
There is only one condition for the surrounding points. They 
should not produce degenerated configurations. Note that the 
computer models of atomic and molecular systems contain 
usually no degeneracy. However, it can be introduced by 
artificially added atoms if an inappropriate procedure is used 
to create them. All other conditions like the number of the 
additional points, or their distance from the molecule, are not 
very important. 

 

 
Figure 7.  An example of a composite system while working with an 
individual molecule. It is surrounded by artificial atoms (points). A 

complete power Voronoi polyhedron must exist for each atom of the 
molecule (blue and yellow spheres) taking into consideration the added 

points. 

Next, each sphere of the union should be treated, to find 
the occupied volume and surface inside its power Voronoi 
polyhedron. This procedure consists of the following steps: 
1. Each polyhedron is divided into elementary triangular 

pyramids (like to ABEV, Fig. 2), as discussed above. 
2. For each pyramid, volume and surface area of the atom 

within this pyramid are calculated according to the 
formulas A3-A10. 

3. For each pyramid a "sign" is calculated as the product of 
three factors SA·SB·SE following the rule of signs: 
a. If the vertex A of the triangular pyramid and the 

polyhedron are located on one side of the base of the 
pyramid (a plane containing the point B), then SA = 1. 
Otherwise SA = -1. 

b. If point B at the base of the pyramid and the 
corresponding face of the polyhedron are located on 
one side of the line containing the polyhedron edge, 
selected to construct point E, then SB = 1. Otherwise, 
SB = -1. 

c. If point E and the polyhedron edge, selected to 
construct point E, are located on the same side of 
point V (vertex of the polyhedron chosen as a vertex 
of the pyramid) then SE = 1. Otherwise, SE = -1. 

4. The occupied volume and surface inside the polyhedron 
are calculated as a sum over all the pyramids, in 
accordance with their signs. 
 
Finally, the total occupied volume and surface for the 

union of spheres is calculated as a sum of the corresponding 
values over all its polyhedra. 

IV. PROGRAM TESTING 
For the testing of our algorithm we compared our 

software with two available programs used for analytic 
computation of the union of spheres. The first program 
(VORLUME) is an implementation of a recently published 
algorithm, based on power Voronoi diagrams and the Gauss' 
divergence theorem for volume calculations [2]. The second 
program (ALPHAVOL) [26] uses an inclusion-exclusion 
formula and the alpha-shape approach to avoid the 
computation of multiple intersections of spheres [18-19]. 
Different complex molecules were tested. Tables 1 and 2 
collect the results of our testing of two models from the 
Protein Data Bank: a molecule of an antigen-antibody 
complex with 2731 atoms (PDB code 1vfb), and an E. coli 
ribosome subunit of 90983 atoms (code 1vow). These 
molecules were used to compare with the results from [2], 
where the solvent accessible surface areas and their volumes 
were calculated. All hydrogen atoms and the bound water 
molecules were discarded. The van der Waals radii of all 
heavy atoms were taken from [27] and expanded by the 
radius of the solvent molecule 1.4 Å. All three programs 
returned the same results for these models with an accuracy 
which is higher than it is needed for biological applications, 
see Tables I and II. 

 

TABLE I.  RESULTS FOR PDB FILE 1VFB (ANTIGEN-ANTIBODY 
COMPLEX, 2731 ATOMS) 

Program Total volume, Å3 Total area, Å2 Timea, s 
our code 64101.949 15259.481 0.90 
Vorlume 64101.949 ± 4.5×10-07 15259.481 ± 3.3×10-07 0.96 
alphavol 64101.949 - 0.14 

a. Timings are reported for computations on one core of an Intel® Xeon® CPU X5482 @ 3.2GHz 

TABLE II.  RESULTS FOR PDB FILE 1VOW (E. COLI RIBOSOME 
SUBUNIT, 90983 ATOMS) 

Program Total volume, Å3 Total area, Å2 Time, s 
our code 2136605.87 528693.40 32.6 
Vorlume 2136605.86 ± 0.01 528693.40 ± 0.01 39.5 
alphavol 2136605.87 - 8.0 

 

174



Our code and the program VORLUME demonstrated 
practically the same operating speed, whereas ALPHAVOL is 
appreciably faster. However, we also found the program 
ALPHAVOL to be not robust. The calculations failed for 
approximately 10% of our investigated structures. Thus we 
did not use it for the following test with a molecular 
dynamics model of an aqueous solution of a C8E6 molecule 
(hexaethylene glycol monooctyl ether) consisting of 54 
atomic units (this molecule is shown in Fig. 7). 

7000 independent instantaneous configurations of the 
molecule were taken from a molecular dynamics trajectory. 
For each configuration the radii of atoms were expanded by 
a value R, ranging from 0 to 20 Å with steps of 0.1 Å. The 
volumes of the unions of these spheres were computed by 
our code and the VORLUME program. The molecular 
dynamics configurations that we used represent a set of very 
different conformations of the molecule, which can be 
stretched as well as entangled. Using different values of radii 
R we change the overlapping of the spheres of our union. 
Thus this calculation performs testing of the programs over 
1.4×106 unions of 54 spheres of different morphology and 
radii. It turned out, that the results of the two programs on 
this dataset coincided with absolute accuracy better than 
6×10-6 Å3 which corresponded to the precision of storage 
format for the values. 

Note, in this paper we used our in-house program for 
calculations of  the power Voronoi diagrams. 

V. APPLICATION FOR SOLVATION SHELL ANALYSIS 
Let us illustrate the application of our algorithm by the 

example of computation of the apparent volume of a solute 
molecule in a molecular dynamics model of a solution. In 
our article [8] we investigated the so called Aβ42 
polypeptide in aqueous solution. The apparent volume 
depends on the influence of the solute on the surrounding 
water. This analysis gives information about protein 
conformations in water. 

 

 
Figure 8.  Illustration of a shell around a solute molecule. The outer border 

is the surface of the union of spheres which are centered on the atoms of 
the solute molecule (dark), with radii exceeding their van der Waals values 

by a given value R. 

The calculation of the apparent volume is not a trivial 
task. This volume is strongly fluctuating from one molecular 

dynamics configuration to another. Thus we should make 
averaging over a large number of configurations. This 
requires fast and robust calculations. The most time-
consuming part of the work is the calculation of the volume 
inside the surface located at a given distance R from the 
solute molecule, Fig. 8. Obviously, this volume can be found 
as the volume of the union of spheres. 

We calculated this volume for sequential values of R 
from 0 to 1.2 nm with a step of ∆R=0.02 nm. The apparent 
volume of the dissolved molecule is then calculated as the 
difference between this volume and the volume, which 
would be occupied in pure water by the water molecules 
which are found within the surface of this union of spheres. 

 

 
Figure 9.  Profile of the apparent volume of an Aβ42 molecule in aqueous 

solution . Curve 1 (black solid) was calculated using the proposed 
algorithm for the union of spheres. Curve 2 (red dashed) was calculated by 

another method using the volume of Voronoi cells [8]. 

Fig. 9 (black line) illustrates the calculation of the 
apparent volume as a function of the outer distance R for our 
molecule in solution at temperature 300K. The value of the 
apparent volume to be compared with experiments 
corresponds to the asymptotic value of this function, i.e. 
where this function does not change with R. Deviations of 
the function from the asymptotic value for smaller R reflect 
just the structure of water itself, and do not relate to the 
experimentally obtained apparent volume. The other curve in 
Fig. 9 shows the profile of the apparent volume calculated by 
a different method, without the discussed calculation of 
volumes inside shells, see [8]. The different behavior for 
small R reflects differences of the methods. It is worth to be 
noted that both curves have the same asymptote. This means 
that the proposed algorithm for the calculation of the union 
of spheres gives a correct physical result, and is a good tool 
for applications. 

VI. CONCLUSIONS 
In this paper we propose an algorithm for the 

computation of volume and surface of union of spheres of 
different radii. It employs ideas of paper [1], where the 
elementary triangle pyramids (subsimplexes) were used for 
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the calculation of the occupied volume inside Delaunay 
simplexes for the investigation of voids between atoms in 
simple liquids. The use of such pyramids enables to get 
explicit formulas for the calculation of volume and surface of 
voids. We extended this approach to the problem of union of 
spheres, using similar triangle pyramids and power Voronoi 
diagrams. In this way we avoid the problem of calculating 
multiple overlapping of spheres and get simple formulas for 
the implementation of the algorithm. 

Testing of the algorithm shows that it is competitive with 
the certified one [2], concerning speed and robustness. The 
formulas proposed give the possibility to use it for different 
applications. In this paper we demonstrate the calculation of 
the apparent volume of polypeptides in water in molecular 
dynamics models of aqueous solutions. 
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