УДК 544.353.2 544.35.038

ИССЛЕДОВАНИЕ СТРУКТУРНЫХ И ТЕРМОДИНАМИЧЕСКИХ ОСОБЕННОСТЕЙ ГИДРАТНОЙ ОБОЛОЧКИ АМФИФИЛЬНОЙ МОЛЕКУЛЫ С₈Е₆

Ким А.В.¹, Медведев Н.Н.¹, Гайгер А.²

1 Институт химической кинетики и горения СО РАН 630090, Новосибирск, ул. Институтская, 3. E-mail: kim_at_kinetics.nsc.ru 2 Dortmund Technische Universitat, Dortmund, Germany

Проведено молекулярно-динамическое моделирование монооктилового эфира гексаэтиленгликоля (C_8E_6) в воде при постоянном давлении 1 бар и разных температурах в интервале от 250 до 400К. Молекула C₈E₆ моделируется с использованием поля сил, взятого из работы [1]. Рассматривается только одна молекула C₈E₆ в модельном боксе, окруженная 7075 молекулами воды с взаимодействием tip4p-Ew. Для расчётов использовался пакет программ Gromacs 4. Проведено сравнение нескольких методов выделения сольватных оболочек и расчёта кажущегося объёма растворённой молекулы (V_{арр}). Собственный объём растворенной молекулы (Vint) рассчитывался с помощью радикального разбиения Вороного. Показано, что кажущийся объём V_{арр} растворённой молекулы увеличивается с ростом температуры. При низких температурах он меньше собственного объёма молекулы, а после 350К становится больше. Это означает, что вклад гидратированной воды (ΔV_{app}) в кажущийся объём отрицателен для низких температур и положителен для высоких. Изучены отличия вклада гидратированной воды вокруг гидрофильной и гидрофобной частей C₈E₆. Рассчитано число водородных связей кислородов молекулы С₈Е₆ с молекулами воды. На каждый кислород эфирной группы приходится в среднем по одной водородной связи; на кислород ОН-группы приходится полторы водородные связи. С повышением температуры число связей уменьшается (примерно на 15% на нашем температурном интервале). Методом внедрения пробной частицы Видома рассчитана свободная энергия ΔG переноса неона из чистой воды в раствор C₈E₆. Эта величина используется как мера гидрофобности растворённой молекулы. С ростом температуры, примерно при 390К, значение ΔG меняет знак с положительного на отрицательный, возникает тенденция к агрегации гидрофобного неона с молекулой C₈E₆, т.е. наша молекула становится гидрофобной. Обсуждается подобие найденных температурных зависимостей ΔV_{app} и ΔG .

1. Введение

Монооктиловый эфир гексаэтиленгликоля $H-(CH_2)_8-(O-CH_2-CH_2)_6-OH$ (C_8E_6) является представителем неионогенных ПАВ класса C_nE_m , относящихся к детергентам. Повышение температуры водных растворов таких веществ вызывает переход от изотропной однофазной системы к системе с двумя сосуществующими жидкими фазами. Переход сопровождается изменением прозрачности раствора и называется точкой помутнения. Это является следствием падения растворимости молекул ПАВ с ростом температуры за счет того, что молекула детергента меняет свои свойства с гидрофильных на гидрофобные.

В данной работе мы проводим молекулярно-динамическое моделирование молекулы C_8E_6 в воде для изучения структурных и термодинамических характеристик ее гидратной оболочки при разных температурах. Основное внимание

уделено нахождению вклада гидратированной воды в кажущийся объём растворенной молекулы, а также расчёту меры гидрофобности молекулы, оцениваемой из сравнения химического потенциала неона в чистой воде и в растворе C₈E₆.

2. Получение моделей

Молекулярно-динамические модели С₈Е₆ в воде получены в условиях постоянного давления 1 бар и фиксированных температур в интервале от 250К до 400К с шагом 10К. Метильные группы молекулы С₈Е₆ представлены объединёнными атомами, использовано поле сил, развитое в работах [1-3]. Взаимодействие молекул воды описывалось потенциалом tip4p-Ew [4]. Каждая модель содержит одну молекулу C₈E₆ и 7075 молекул воды. Такая большая модель гарантирует отсутствие взаимодействия растворённой молекулы с гидратной оболочкой её периодического образа. Расчёты проводились с помощью пакета классической молекулярной динамики Gromacs 4 [5]. Продолжительность моделирования равновесного состояния составляла 20 нс для каждой температуры. Для обеспечения постоянства давления и температуры использовались баростат Парринелло-Рамана [6] и термостат Нозе-Хувера [7]. Электростатическое взаимодействие рассчитывалось методом суммирования Эвальда (particle mesh Ewald) [8]. Шаг интегрирования равнялся 2 фс. Для последующей обработки сохранялись конфигурации через каждые 2 пс. Для расчета разбиения Вороного и его анализа использовались программы, разработанные Волошиным В.П..

3. Волюметрические характеристики

Плотность раствора меняется с температурой не только за счёт изменения плотности воды, но также за счёт изменения объёма растворённой молекулы и воды в гидратной оболочке. Определим некоторую границу вокруг растворённой молекулы, за пределами которой влияние молекулы на воду пренебрежимо мало. Пусть V_{tot} – объём, заключённый внутри этой оболочки. Если из объёма раствора V_{tot} исключить объём, который занимало бы то же количество воды в свободном состоянии V_{bulk_water} , то получится кажущийся (apparent) объём растворённого вещества, V_{app} :

 $V_{\rm app} = V_{\rm tot} - V_{\rm bulk_water} \tag{1}$

Кажущийся объём состоит из собственного объёма растворённой молекулы V_{int} (intrinsic) и вклада гидратированной воды ΔV , вызванного изменением плотности окружающей воды:

 $V_{\rm app} = V_{\rm int} + \Delta V. \tag{2}$

В работе с компьютерными моделями можно рассчитать V_{app} , V_{int} и ΔV . Это можно сделать разыми способами, см. например [9-11].

Традиционное приближение для определения сольватной оболочки подразумевает выделение поверхности, удалённой на расстояние R от растворённой молекулы (ван дер Ваальсовой поверхности молекулы). Полный объём внутри такой поверхности может быть рассчитан как объёдинение шаров, центрированных на атомах растворённой молекулы с соответствующими радиусами R_{vdw} + R. Задача вычисления объёма объединения пересекающихся сфер была исследована математиками [12, 13] и реализована в виде готовых алгоритмов, один из которых [14] был использован в данной работе. Таким образом, был

рассчитан $V_{tot}(R)$ для набора R от 0 до 2 нм с шагом 0,01. Зная количество молекул воды N(R)внутри R-поверхности для каждой конфигурации, можно рассчитать, какой объём они бы занимали в чистой воде:

 $V_{\text{bulk_water}} = N(R) v_0, \qquad (3)$

где v_0 – средний объём, приходящийся на молекулу чистой воды. Рассчитанные согласно формуле (1) значения V_{app} (*R*) показаны на рис. 1 пунктиром. Высокий первый пик и последующие осцилляции есть проявление ближнего порядка в воде, их наличие не связано с влиянием растворенной молекулы на

Рис. 1. Кажущийся объём V_{арр} молекулы C₈E₆ для разных толщин *R* гидратной оболочки. Расчет традиционным методом (пунктир) и комбинированным (с использованием объёмов многогранников Вороного) (сплошная линия).

воду. Искомый кажущийся объём соответствует асимптотическому значению данной функции. Значительные отклонения функции от асимптотического значения при малых R могут быть причиной ошибки в случае неправильного выбора границы сольватной оболочки. В данном традиционном подходе асимптотические значения $V_{\rm app}$ достигаются на расстояниях далее одного - полутора нанометров.

Однако для нахождения объёма сольватной оболочки удобнее использовать разбиение Вороного. В этом случае он рассчитывается как сумма объёмов ячеек Вороного тех молекул воды, центры которых попали внутрь данной *R*поверхности. Напомним, что ячейка (многогранник) Вороного определяет ближайшую к атому область пространства. В этом подходе осцилляции, вызванные корреляциями между молекулами воды, замазываются, и функция кажущегося объёма быстрее выходит на асимптотическое значение, рис.1, сплошная линия. Данный способ расчёта кажущегося объёма использовался нами в дальнейших расчётах. Собственный объём V_{int} и его определение является предметом дискуссии в литературе [15, 9]. В данной работе V_{int} рассчитывался при помощи радикального разбиения Вороного. Оно учитывает различные радиусы атомов растворенной молекулы, и его ячейки обладают плоскими гранями, что удобно для вычисления их объёмов.

На рис. 2 приведены кажущийся, собственный объём молекулы С₈Е₆ и вклад гидратированной воды ΔV в кажущийся объем, полученный по формуле (2). Видим, что все рассматриваемые величины растут с температурой. При этом кажущийся объём V_{арр} при низких температурах меньше собственного объёма молекулы, а начиная с 340К - превышает его. Таким образом, вклад гидратированной воды ΔV является отрицателеным для низких температур и положителеным для высоких. Заметим, что температура смены знака ΔV , примерно 350К, совпадает с экспериментальной точкой помутнения С₈Е₆, равной 348К [16].

Мы рассчитали парциальный вклад в кажущийся объём от гидрофильной и гидрофобной частей C_8E_6 (см. рис. 3). Видно, что после нагрева выше 320*K* вода вокруг гидрофобной части становится рыхлее ($\Delta V > 0$), чем

Рис. 2. Кажущийся объём V_{app} , собственный объём V_{int} и вклад гидратированной воды ΔV в кажущийся объем молекулы C_8E_6 в воде в зависимости от температуры.

Рис. 3. Парциальные вклады гидратированной воды в кажущийся объем C₈E₆ : от гидрофильной (ромбики) и гидрофобной (квадратики) частей молекулы.

в чистой воде. В то время как гидрофильная часть молекулы C_8E_6 практически во всём исследуемом диапазоне температур имеет $\Delta V < 0$.

Рассчитано среднее число водородных связей молекулы С₈Е₆ с молекулами воды (рис.4). На каждый из 6 кислородов эфирных групп приходится в среднем по одной водородной связи; на ОН-группу приходится примерно полторы водородные связи. С повышением температуры число связей уменьшается (примерно 15% на исследуемом интервале температур).

4. Расчет химического потенциала

Для изучения степени гидрофобности С₈Е₆ рассчитывалась свободная энергия гидрофобного Ne в растворе и в чистой воде. Для этого использовался метод Видома для расчёта химического потенциала внедрённой тестовой частицы [17, 18]. Для NPT ансамбля

избыточный химический потенциал пробной частицы в растворе равен:

$$\mu_{\rm ex} = -kT \ln(\langle V e^{-U/kT} \rangle / \langle V \rangle),$$

где U – потенциальная энергия частицы, внедрённой в произвольное место модельного бокса, V – объём модельного бокса. Угловые скобки <···> означают усреднение по всем пробным внедрениям и по разным конфигурациям молекулярно-динамической траектории. В качестве пробной частицы взят атом неона (σ =3,035 Å, ε/k_{b} =18,6 K) [19]. На рис. 5 представлена разность между значениями химического потенциала неона в растворе и чистой воде:

(4)

(5)

 $\Delta G = \mu_{\text{ex}}(\text{Solv}) - \mu_{\text{ex}}(\text{Bulk}).$

Свободная энергия перехода гидрофобного неона из чистой воды в раствор может служить мерой гидрофобности С₈Е₆. Другими слоуменьшение свободной вами, энергии указывает возрасна тающую тенденцию к агрегированию молекул С₈Е₆ за счёт гидрофобного взаимодействия. Точка смены знака свободной энергии (~390К) близка к температуре смены знака ΔV_{app} и экспериментальной температуре помутнения C_8E_6 (350K).

Рис. 5. Свободная энергия переноса Ne из чистой воды в гидратную оболочку С₈Е₆.

5. Результаты, заключение

Получены модели раствора С8Е6 в воде. Предложено несколько способов расчёта кажущегося объёма, из них выбран оптимальный, в котором сольватная

Рис. 4. Число водородных связей молекулы С₈Е₆ с водой (квадратики), отдельно для эфирных кислородов (ромбики) и ОН-группы (треугольники)

оболочка выделяется по расстоянию, а объём рассчитывается в виде суммы объёмов ячеек Вороного. Собственный объём растворенной молекулы (V_{int})рассчитывался с помощью радикального разбиения Вороного. Рассчитаны кажущийся объём V_{арр}, собственный объём V_{int}, вклад воды в кажущийся объём ΔV . Показано, что кажущийся объём V_{app} растворённой молекулы увеличивается с ростом температуры. При низких температурах он меньше собственного объёма молекулы, а после 350К становится больше. Это означает, что вклад гидратированной воды (ΔV_{avv}) в кажущийся объём отрицателен для низких температур и положителен для высоких. Изучены отличия вклада гидратированной воды вокруг гидрофильной и гидрофобной частей C₈E₆. Рассчитано число водородных связей кислородов молекулы C₈E₆ с молекулами воды. На каждый кислород эфирной группы приходится в среднем по одной водородной связи; на кислород ОН-группы приходится полторы водородные связи. С повышением температуры число связей уменьшается (примерно на 15% на нашем температурном интервале). Рассчитана разность избыточного химического потенциала Ne в растворе с C₈E₆ и в чистой воде. Это значение свободной энергии используется как качественная оценка гидрофобности растворённой молекулы. Показана корреляция ΔV с гидрофобностью.

Литература

- Fischer, J., Paschek, D., Geiger, A., Sadowski, G. //J. Phys. Chem. B. 2008, 112. P. 2388-2398.
- 2. Stubbs, J.M., Potoff, J.J., Siepmann, J.I. //J. Phys. Chem. B. 2004. 108. P. 17596-17605.
- 3. Chen, B., Potoff, J.J., Siepmann, J.I. //J. Phys. Chem. B. 2001. 105. P. 3093-3104.
- 4. Horn, H.W., Swope, W.C., Pitera, J.W. //J. Chem. Phys. 2004. 120. 20. P. 9665-9678.
- 5. Lindahl, E., Hess, B.; van der Spoel, D. J. //Mol. Model. 2001. 7. P. 306-317.
- 6. Parrinello, M., Rahman, A. //J. Appl. Phys. 1981. 52. P. 7182-7180.
- 7. Hoover, W. G. //Phys. Rev. A. 1985. 31. -P. 1695-1697.
- Essmann, U., Perera, L., Berkowitz, M. L., Darden, T. A., Lee, H., Pedersen, L. G. //J. Chem. Phys. - 1995. - 103. -P. 8577-8593.
- 9. Voloshin, V.P., Medvedev, N.N., Andrews, M.N., Burri, R.R., Winter, R.R., Geiger, A. //J. Phys. Chem. B. 2011. in press.
- Voloshin, V.P., Anikeenko, A.V., Medvedev, N.N., Geiger, A., Stoyan, D. //Proc. 7-th ISVD, Quebec, 28-30 June 2010. - 2010. -P. 254-259.
- 11. Weiss, V. //Stochastics and Stochastic Rep. 1995. 55. -P. 195-205.
- 12. Edelsbrunner, H. //Discr. and Comp. Geom. 1995. 13. -P. 415-440.
- 13. Sastry, S, Corti, D.S., Debenedetti, P.G, Stillinger, F.H. //Phys. Rev. E. 1997. 56. -P. 5524-5532.
- 14. Cazals, F., Kanhere, H., Loriot, S. Computing the Volume of a Union of Balls a Certified Algorithm //Sophia Antipolis Cedex, France. 2009.
- 15. Chalikian, T.V. //Ann. Rev. Biophys. Biomol. Struct. 2003. 32. -P. 207-235.
- Paschek, D., Engels, T., Geiger, A., Rybinski, W. //Coll. and Surf. A: Phys. chem. and Eng. Asp. - 1999. - 156. -P. 489-500.
- 17. Widom, B. //J. Chem. Phys. -1963. 39. -P. 2808.
- Frenkel, D., Smit, B. Understanding Molecular Simulation. From Algorithms to Applications. USA, San Diego: Academic Press, 1996. - 638 p.
- 19. Paschek, D. //J. Chem. Phys. -2004. 120. -P. 6674.

УДК 544.353.2 544.35.038

STRUCTURE AND THERMODYNAMIC CHARACTERISTICS OF HYDRATION SHELL OF AMPHIPHILIC MOLECULE C₈E₆

Kim A.V.¹, Medvedev N.N.¹, Geiger A.²

¹ Institute of Chemical Kinetics and Combustion 630090, Novosibirsk, Institutskaya st., 3. E-mail: kim_at_kinetics.nsc.ru ² Dortmund Technische Universitat, Dortmund, Germany.

Aqueous solution of monoocthyl ether hexaethylen glycol (C_8E_6) is studied by classical molecular dynamics simulations at constant ambient pressure conditions and temperatures between 250K and 400K. The molecule C₈E₆ was represented by united atoms force field proposed in paper of J.Fischer et al. J. Phys. Chem. B., 2008, 112, 2388. A single C₈E₆ molecule was surrounded by 7075 molecules of tip4p-Ew water in a model box with periodic boundary conditions. Molecular dynamic software package Gromacs 4 was used. Two different methods for selection of the hydration shell and calculation of the apparent volume (V_{app}) of the solute molecule were used. Intrinsic volume of the solute (V_{int}) was calculated using power (radical) Voronoi tessellation. It is shown that at low temperatures (before 350 K) the apparent volume of C_8E_6 is less than the intrinsic one but becomes larger with temperature growing. It indicates that the contribution of the hydration water into the apparent volume (ΔV_{app}) is negative for lower temperatures and becomes positive for the higher ones. The partial contribution of the hydration water was also calculated for hydrophilic and hydrophobic parts of C₈E₆ molecule. The difference between the obtained values is discussed. The number of hydrogen bonds between oxygens of C₈E₆ molecule with water was calculated. On average, one hydrogen bond per ether oxygen and 1.5 bonds per hydroxyl oxygen were found. The number of hydrogen bonds of the C₈E₆ molecule decreases with the temperature increase (around 15% for our temperature interval). The free energy of transfer of the neon atom from pure water to C₈E₆ solution is used as a measure of hydrophobicity of the C₈E₆ molecule. We calculated this value ΔG for different temperatures using Widom test particle insertion method. The value ΔG increases with temperature and changes its sign from positive to negative at 390 K. This is the result of the increasing tendency for aggregation of hydrophobic neon with C₈E₆ molecule. Thus C₈E₆ molecule becomes hydrophobic at 390 K. The similarity between temperature dependences of ΔV_{app} and ΔG is discussed.

NoNo	Ф.И.О	Должность и место работы	Телефон рабочий
			E-mail
1	Ким Александра Валерьевна	Ст. инженер-	(383)333-28-54
		исследователь, группа	
		Супрамолекулярных	
		структур ИХКГ СО РАН	
2.	Медведев Николай Николае-	Руководитель группы Суп-	(383)333-28-54
	ВИЧ	рамолекулярных структур	
		ИХКГ СО РАН	
3.	Гайгер Альфонс	Professor of Technical Uni-	
		versity of Dortmund, Ger-	
		many	

Key words: molecular dynamic simulation, Voronoi tessellation, solutions, solvation shell,