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Abstract— A simple formalism is proposed for a quantitative 
analysis of interatomic voids inside and outside of a molecule 
in solution. It can be applied for the interpretation of 
volumetric data, obtained in studies of protein folding in water. 
The method is based on the Voronoi-Delaunay tessellation of 
molecular-dynamic models of solutions. It is suggested to select 
successive Voronoi shells, starting from the interface between 
the solute molecule and the solvent, and continuing to the 
outside (into the solvent) as well as into the inner of the 
molecule. Similarly, successive Delaunay layers, consisting of 
Delaunay simplexes, can also be calculated. Geometrical 
properties of the selected shells and layers are discussed. The 
behavior of inner and outer voids is discussed by the example 
of a molecular-dynamic model of an aqueous solution of the 
polypeptide hIAPP. 

Index terms—Voronoi diagram, solvation shell, molecular 
dynamics of solutions, Voronoi cells, Delaunay simplexes. 

I.  INTRODUCTION 
The investigation of biological molecules in aqueous 

solution is an important problem of molecular biology. In 
particular, it is important to understand the mechanism of 
protein folding in water at different temperatures and 
pressures. Volumetric experiments are used for this study. 
The change of the volume of the solution, induced by the 
addition of a protein molecule is measured [1]. The influence 
of temperature and pressure induces changes of the 
volumetric properties, both inside the solute molecule, at its 
boundary, and also in the surrounding water. The knowledge 
of these contributions to the volume of the solution helps to 
validate propositions about the occurring conformational 
changes. However, using only experimental data, it is very 
difficult to separate these contributions. Computer 
simulations help to solve this problem. 

Models of the solutions are generated usually by 
molecular dynamic simulations, see for example [2]. The 
next step is the analysis of the models: detection and 
characterization of interatomic voids and local densities. 
There are very different approaches used for the analysis of 
voids in atomic and molecular systems. Some of them were 
developed for the investigation of the empty space between 
the atoms in liquids and glasses [3-5], granular matters and 
colloids [6,7], polymers and membranes [8,9]. Others are 
specialized to study cavities and pockets in large biological 
molecules [10-12]. Solvation shells [13,14] and the boundary 
region between proteins are also studied [15,16]. 

Consecutive shells, consisting of Voronoi cells, were used 
for the analysis of the density of hydration shells around 
polypeptides in [17]. However, we are not aware of articles, 
where the voids both inside and in the surroundings of a 
solute molecule were analyzed. Such investigations should 
be made by a single-stage method for all regions of the 
solution. Fortunately, there is no necessity to develop a new 
method for such a work. At present, there is no doubt, that 
the most suitable and general method for the selection and 
analysis of voids and the local density in molecular system is 
an approach, which is based on Voronoi diagrams (the 
Voronoi -Delaunay method) [18,19]. 

In this work, we present a simple technique for the 
decomposition of the Voronoi-Delaunay tessellation into 
shells (layers) related with the solute. It allows to 
characterize voids (local density) both inside and outside the 
solute molecule. 

II. VORONOI-DELAUNAY TESSELLATION OF A SOLUTION 
Fig.1 shows a two-dimensional illustration of a solution 

model and its Voronoi-Delaunay tessellation. 
Remember, the size of the atoms should be taken into 

account, if one studies interatomic voids [3,20,21]. This 
means that the Voronoi tessellation should be calculated 
allowing for the surface of the atoms. Thus we should deal 
with S-tessellation [22,23] (additively weighted [18]), 
instead of the ordinary Voronoi tessellation (related with the 
atomic centers). In this case we make a correct assignment of 
the empty space to a given atom, i.e. we include all points of 
space, which are closer to the surface of a given atom, than 
to the surfaces of all other atoms of the system. A simpler 
variant, which considers the atomic surfaces, is the well-
known power or radical tessellation [18,21,24]. In this case 
the assignment of the empty space to individual atoms is not 
quite physical, but it is easier to implement. The known 
complexities of the S-tessellation (theoretically possible 
disconnectivity of the tessellation and overlapping of 
Delaunay simplexes in some cases [19,23,25] do not arise for 
our molecular systems, where the size difference of the 
atoms is rather small (usually less than a factor of 2). In 
addition, these peculiarities of the S-tessellation can be easily 
taken in to account at the calculation of the tessellation. 

The molecules of the solvent (usually water molecules) 
are considered as uniform spheres, as it is usually done in 
structure analyses of computer models of water and water 
solutions. Note, the specific features of the interaction  
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Figure 1.  Left: 2D illustration of a solution. Atoms of the solute molecule are shown by dark disks. Atoms of the solvent are pink (light). Right: Voronoi-
Delaunay tessellation of the model. Thin (black) lines show Voronoi cells,  thick (red) lines show Delaunay simplexes. 

between water molecules (hydrogen bonds) are essential in 
the stage of the molecular dynamics simulation. 

The Voronoi-Delaunay tessellation is calculated for 
every configuration of the studied model. All atoms (both of 
the solute and solvent) are considered as a single system in 
this stage. The calculation of the tessellation is 
straightforward now. Algorithms for the calculation of the S-
tessellation were described in the literature, see e.g. [23]. 
Programs for the calculation of the power tessellation (as for 
ordinary Voronoi-Delaunay tessellations) are available in 
standard geometrical libraries. 

For the processing of the tessellation, it is convenient to 
use the Delaunay network. The sites of this network are the 
atoms of the system, and the bonds connect adjacent atoms. 
Remember, adjacency on the Delaunay network means, that 
the Voronoi cells of a given pair of atoms have a common 
face, Fig.1. For the following applications it is convenient to 
establish, which atoms determine the vertexes of the 
Delaunay simplexes. In this stage of the work, we will 
differentiate between the atoms of the solute and the solvent. 

III. VORONOI SHELLS 
Knowing the adjacency of the atoms (Delaunay 

network), one can begin the selection of the Voronoi shells 
around the solute molecule. 

A. Selection of the boundary Voronoi shells 
 
Go over all atoms of the solute molecule and find the 

atoms, which are adjacent to at least one atom of the solvent. 
Record the numbers of these atoms. 

Thus we establish the atoms of the solute molecule, 
which are in direct contact with the solvent, and 
simultaneously, the atoms of the solvent which are in contact 
with the solute. The former represent the boundary atoms of 
the solute, and the latter define the nearest solvation shell. 
Let us assign indexes 0 and 1 to these atoms, and call these 
groups of atoms (and their Voronoi cells) as 0-th and 1-st 
Voronoi shells, see Fig.2. Let us denote the number of atoms 
in the shells as N0 and N1. 
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Figure 2.  Illustration of the 1-st and the 0-th Voronoi shells. All atoms with index 1 have at least one atom of the solute as a neighbor. All atoms with index 
0 have at least one atom of the solvent as a neighbor. If there are no solvent atoms inside the solute, both Voronoi shells are simply connected (left). The 

existence of solvent atoms inside the solute results in a not simple connectivity of the shells. See shells 1 and 1� (right). 
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Figure 3.  The 1-st (red) and the 0-th (black) Voronoi shells are presented as clusters on the Delaunay network for the models shown in Fig.2. Selected 
atoms are shown by large points and squares. 

 
The volume of the shells (V0 and V1) can be calculated as the 
sum of the volumes of the Voronoi cells in a given shell. 

Usually both of these shells are simply connected, Fig.2a. 
However, if some atoms are inside the solute (this means, 
that the set of solvent atoms is not simply connected on the 
Delaunay network), the 1-st shell is also not simply 
connected. The existence of water molecules inside the 
solute protein molecule has a special interest in biology. Our 
technique can be used to find such molecules in computer 
models. Simply, one should make a standard analysis of the 
clusters on the Delaunay network. If the selected (colored) 
sites (the atoms with index 1) represent a simply connected 
cluster, then water inside the solute is absent. 

Fig.3 demonstrates our Voronoi shells as clusters on the 
Delaunay network. In the first case they are simple 
connected (Fig.3a). If there is a water molecule inside the 
solute (Fig. 3b), there is a more complicated situation. 

Note, it is obvious, that when the solute molecule is 
simply connected on the Delaunay network, then the 0-th 
Voronoi shell is also simply connected. 

B. Calculation of subsequent Voronoi shells 
The 2-nd Voronoi shell is defined by the solvent atoms 

which are neighbors of the 1-st shell (adjacent to atoms with 
index 1). Let us assign index 2 to these atoms. Obviously, 
none of these atoms are in contact with atoms of the solute, 
else it could be assigned to the 1-st shell. 

Similarly, we can select outer neighbors of the 2-nd shell. 
They define the 3-rd Voronoi shell and get index 3. To 
continue further, all subsequent Voronoi shells can be 
selected, and called the 4-th, 5-th, ... k-th ... and so, up to the 
maximum, that is permitted by the model. 

From a mathematical point of view, the Voronoi shells 
correspond to the consecutive topological neighbors on the 
Delaunay network, see for example [26] and references 
there. However, the selection of the neighbors usually begins 
from a single (central) site (Voronoi cell). In our case we 
start from the boundary atoms of the solute molecule. If the 
1-st Voronoi shell is simply connected, all subsequent shells 
are also simply connected. However, the shape of the 

Voronoi shells can be very different and is determined by the 
morphology of the solute molecule. Protein molecules have 
usually a globular shape. In this case the 0-th, 1-st and other 
Voronoi shells (understood as unions of the Voronoi cells 
with equal index) are isomorphic to spherical layers. 
However, in the case of a torus-like molecule, containing a 
ring of atoms, solvent molecules can be located in the 
interior of this ring. In this case the first Voronoi shells will 
also be tori. 
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Figure 4.  2D illustration of Voronoi shells outside and inside a big solute 
molecule. Atoms are not shown. The location of the boundary atoms (with 
index 0) are marked symbolically by the bold curve. The digits show the 
numbers of the shells. The inner shells have negative numbers. They may 

be not simply connected. 

Note, the Voronoi shells do not contain “through holes”, 
i.e. going from the (k-1)-th to the (k+1)-th shell, one will be 
obligated to traverse the k-th shell. This is an obvious 
consequence of the Voronoi shell definition. Indeed, the k-th 
Voronoi shell is an obligatory “intercalation” between these 
shells: it is derived from the (k-1)-th, and generates the 
(k+1)-th one. 

Let us consider now the Voronoi shells, which are 
constructed, when proceeding from the 0-th shell into the 
interior of the molecule. All internal neighbors of the 0-th 
shell represent the -1-st (minus first) Voronoi shell, Fig.4. 
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The atoms of this shell have index -1. None of these atoms 
contact the solvent, else it would belong to the 0-th shell. 
Similarly, one can select inner neighbors of the -1-st shell. 
They represent the -2-nd (minus second) Voronoi shell, and 
its atoms get the index -2. By continuing this, one can 
determine all subsequent “negative” shells, until all atoms of 
the molecule are covered. These shells can have a more 
complicate topology than the outer ones. In particular, they 
can be not simply connected, in spite of a simply connected 
0-th shell, Fig.4. 

Thus, we decomposed the solution into shells in relation 
to the surface of the solute molecule. This decomposition is 
unambiguous: no atom (Voronoi cell) is unconsidered, and 
none are taken into account twice. 

For each Voronoi shell different characteristics can be 
calculated, e.g.: the number of atoms Nk ; the volume Vk, 
defined as the sum of the volumes of all Voronoi cells of the 
shell, the mean volume of the Voronoi cell vk = Vk,/ Nk, the 
inner and outer surface areas Sk-1 and Sk, which are calculated 
as the sum of the area of the boundary Voronoi faces. Since 
the outer surface of a given shell is the inner one for the 
following shell, it is sufficient to speak of intermediate 
surfaces Sk-1,k. One can propose also other characteristics of 
the Voronoi shells, e.g. the empty volume, and so on. 

Every configuration of the solution is characterized by a 
sets of numbers, in particular: 
the numbers of atoms in the Voronoi shells 

... N-2, N-1, N0, N1, N2 ..., 
the shell volume values  

...  V-2, V-1, V0, V1, V2, ..., 
the areas of the intermediate surfaces  

...  S-2,-1, S-1,0, S0,1,  S1,2,  S2,3  ....., 
and so on. 

IV. DELAUNAY LAYERS 

A. Selection of the first (boundary) Delaunay layer 
We can classify the Delaunay simplexes by the atomic 

indexes defined over Voronoi shells. Let us define thus the 

index I of a given Delaunay simplex as the sum of the atomic 
indexes at its vertexes: 

 I= i1+i2+i3+i4 (Α1) 

Remember, the Delaunay simplex is formed by “mutually 
close” atoms, all of them are first topological neighbors. This 
means that the difference between the atomic indexes i in 
(A1) cannot be greater than 1. 

Atoms of the 0-th and 1-st Voronoi shells can form the 
following simplex indexes: 

 
I= 0    (all simplex vertexes are located on the solute 

molecule:  0+0+0+0); 
I= 1    (three vertexes on the solute and one on solvent: 

0+0+0+1); 
I= 2    (correspondingly: 0+0+1+1); 
I= 3    (correspondingly: 0+1+1+1); 
I= 4    (all vertexes are on solvent molecules: 1+1+1+1). 
 
We will call the union of Delaunay simplexes with the 

same index I as Delaunay sub-layer I. The sub-layers 0 and 4 
are produced by atoms of the same Voronoi shells. They are 
result of “wrinkles” of the Voronoi shells, and do not play a 
principal role in our analysis. Moreover they can be absent in 
some models. We will discuss such sub-layers in more 
details below. More important are the sub-layers, whose 
vertexes are both on the 0-th and 1-st Voronoi shells 
(I=1,2,3). The union of these simplexes represents a shell 
(layer) between the atoms of solute and solvent. We call this 
shell the 1-st Delaunay layer. 

Fig.5 shows a two-dimensional illustration of these 
Delaunay constructions. In a plane a Delaunay simplex has 
three vertexes, thus there are only four different simplex 
indexes: I=0,  (0+0+0);  I=1,  (1+0+0);  I=2,  (1+1+0) and 
I=3  (1+1+1), and the first Delaunay layer is presented by 
two sub-layers, (I= 1 and 2). 
[1]  

 

       

I=2I=1

I=0

I=3

 
Figure 5.  2D-illustration of the first Delaunay layer for the model shown in Fig.2a. Separate Delaunay sub-layers and their unions are shown at the right. 
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Figure 6.  Illustration of the first Delaunay layer of a one-atomic solute. It 
consists of Delaunay simplexes with one index only: I=2,  (0+1+1). 

 
It is significant that the union of Delaunay simplexes, the 

vertexes of which are both on the solute and solvent 
represent a solid shell, i.e. at no point its width is equal to 
zero. For separate sub-layers this is not true. The thickness of 
a sub-layer degenerates into a point at the common vertexes, 
see Fig.5. (In 3D a zero width can also be along a common 
edge). 

The first Delaunay layer characterizes the void space 
between the atoms of the solute and solvent. This important 
feature of the Delaunay layer is also valid, if some sub-layers 
are absent, see for example the one-atomic solute, Fig.6. 

 

B. Calculation of the subsequent Delaunay layers 
Let us consider Delaunay simplexes between the (k-1)-th 

and k-th Voronoi shells. They produce the indexes:  
 
I = 4k-4, (k-1+k-1+k-1+k-1); 
I = 4k-3, (k-1+k-1+k-1+k); 
I = 4k-2, (k-1+k-1+k+k); 
I = 4k-1, (k-1+k+k+k); 
I = 4k, (k+k+k+k). 
 
The simplexes with indexes 4k-3, 4k-2 and 4k-1, whose 

vertexes are positioned on atoms of both Voronoi shells, 
represent a solid shell between the atoms, and define the K-th 
Delaunay layer. In this case K=k. The simplexes with index 
I=4k-4 had been obtained already in the calculation of the 
previous, (K-1)-th Delaunay layer, and the index I=4k will 
appear once more in the calculation of the next (K+1)-th 
Delaunay layer. For the sake of definiteness, we will assign 
sub-layer 4k to the K-th Delaunay layer. In this case all 
Delaunay simplexes will be assigned to the Delaunay layers 
unambiguously. 

We can also select Delaunay simplexes inside the solute 
molecule. They manifest the inner Delaunay layers. 

The 0-th and -1-st Voronoi shells define simplex indexes: 
 

I =  0, (0+0+0+0); 
I = -1, (-1+0+0+0); 
I = -2, (-1-1+0+0); 
I = -3, (-1-1-1+0); 
I = -4, (-1-1-1-1). 
 
The union of sub-layers -1,-2,-3 represents the 0-th 

Delaunay layer. We should also add sub-layer 0 to this layer, 
and sub-layer -4 will be assigned to the -1-st Delaunay layer. 
If there is a -2-nd Voronoi shell, then one can define the -1-st 
Delaunay layer, which consist of sub-layers -4, -5, -6, -7. 
Sub-layer -8 will be related to the next “negative” Delaunay 
layer (-2-nd). We can continue this procedure until all 
Voronoi shells inside the solute molecule are covered. 

Thus, Delaunay layers are defined unambiguously by the 
Voronoi shells and represent an additional method for the 
decomposition of the Voronoi-Delaunay tessellation of the 
solution both inside and outside the solute. 

Every Delaunay layer can be characterized, for example, 
by a volume DK, calculated as the sum of its Delaunay 
simplex volumes. For physical applications it can also be 
interesting to know the empty volume EK of the layers. In 
this case one sums the empty volumes of the simplexes 
(without the volume occupied by the atoms). 

Every configuration of the solution can be characterized 
by sets of Delaunay layer parameters, in particular, by the 
volumes: 

...  D-2, D-1, D0, D1, D2, ..., 
and/or the empty volumes: 

...  E-2, E-1, E0, E1, E2, ... 
and so on. 

V. EXAMINATION OF AN AQUEOUS SOLUTION OF THE 
POLYPEPTIDE HIAPP 

Molecular-dynamic models of a single amyloidogenic 
polypeptide molecule (hIAPP) (Fig.7) in aqueous solution 
had been generated in [27], and had been used for the 
calculation of volumetric characteristics in [17]. The solute 
molecule contains 462 heavy atoms (i.e. without hydrogen 
atoms) and is surrounded by 10843 water molecules. 
Production runs of 200 to 500 ns each were performed for 11 
different temperatures from 250 to 450 K.  

 

 
Figure 7.  A configuration of the hIAPP molecule in aqueous solution. 

Water molecules are not shown. 
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For the analysis, 1000 independent configurations, equally 
spaced over the last 200 ns (every 200 ps) of the equilibrated 
production runs, were used for averaging. 

These models can be decomposed properly into five 
consecutive Voronoi shells: k = -1, 0, 1, 2, 3. Shell -2 
appears not in every configuration, therefore we do not 
analyze it specially. We calculated also the 4-th and 5-th 
Voronoi shells. However the linear dimension of these shells 
exceeds half of the model box in some configurations. An 
analysis of these shells could be problematic, because of the 
periodic boundary conditions used for our models. Although, 
as we found, all distant shells (beginning from the 2-nd) 
behave similarly, and are in accordance with bulk water. 

Fig.8 demonstrates the temperature dependence of the 
volumes for the Voronoi shells with numbers -1, 0, 1 and 2. 
The total Voronoi volume of the molecule is also shown in 
the central diagram of Fig .8. In our approach it is calculated 
as the sum of the volumes of all inner Voronoi shells: -2, -1 
and 0. It represents the intrinsic volume of hIAPP [1,17,28], 
i.e. the volume “assigned” to a solute molecule in solution. It 
includes the van der Waals volume of the molecule as well 
as the volume of voids assigned to the molecule: all voids 
inside the molecule plus a part of the surrounding empty 
space.  
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Figure 8.  Voronoi shell volumes as a function of temperature. From 

bottom to top: the shells with the numbers from -1 to 2. In the center (blue): 
the total Voronoi volume of the hIAPP molecule (intrinsic volume). 

The volumetric calculations performed in [17] gave 
exactly the same behavior for the intrinsic volume of hIAPP. 
The increase of this volume with temperature is natural, 
however the growth rate (slope of the curve) is larger at 

temperatures higher than 350K, see Fig.8 (and also Fig.16 in 
[17]). The previous analysis cannot explain this change of 
the thermal expansion coefficient. Our present 
decomposition into selected Voronoi shells helps to clarify 
the situation. 
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Figure 9.  Empty volume of the Delaunay layers in aqueous solution of 

hIAPP as function of temperature. From bottom to top: the layers from K=0 
to K=2. 
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Figure 10.  The number of atoms in the Voronoi shells. From bottom to top: 
the shells from k=-1 to k=2. 

 
The following considerations can lead to an explanation 

of the observed temperature behavior of the intrinsic volume 
of hIAPP in aqueous solution. First, one could imagine, that 
some structural changes occur inside the molecule at higher  

100



  
 

Figure 11.  Left: a fragment of the boundary area between molecule and 
solvent (from Fig.2). The 0-th Voronoi shell is marked and colored (light 

blue). Right: the same part of the boundary area but with the lower density 
of the surrounding water. Dotted line shows the new border between 

molecule and solvent. One can see, the volume of the shell is increased in 
comparison with the previous situation. 

temperature, which result in an additional increase of the 
interatomic voids. In our analysis, the -1-st Voronoi shell and 
the 0-th Delaunay layer belong to the molecular interior. 
However, there is no increase of the volume of these shells 
after 350K, see Fig.8 and Fig.9. Instead, one can see an 
increase of the volumes of the 0-th Voronoi shell and the 1-st 
Delaunay layer, which are at the border of the molecule. 
Therefore it could be reasonable to assume, an onset of 
“unfolding” of the hIAPP molecule causes this behavior. 
Indeed, if the molecule is (on average) more unfolded at 
higher temperature, it will have more atoms in contact with 
the solvent. As the boundary atoms involve some volume 
from outside, an increase of the number of these atoms 
should result in increase of the intrinsic volume of the 
molecule. However, as one can see in Fig. 10, the numbers 
of atoms in the Voronoi shells have no tendency to increase 
with temperature.  

This means that the additional increase of the intrinsic 
volume cannot be explained by conformational changes (as 
the unfolding of the molecule). We calculated the gyration 
radius of the molecule and indeed, the fraction of 
“elongated” configurations increases slightly with 
temperature. However, this is not the reason for the change 
of the intrinsic volume: when calculating the correlation 
coefficient between gyration radius and intrinsic volume, we 
found that it is negligible. Its value is less than 0.01 at 350K 
and decreases at higher temperatures. 

Based on these considerations, we suppose that the origin 
of the additional increase of the intrinsic volume of hIAPP at 
high temperature is the density decrease of the surrounding 
water. Indeed, the water density changes faster above 350K 
than at lower temperatures. This can be seen for the 1-st and 
2-nd Voronoi shell in Fig. 8. The next shells (k=3,4,5) 
demonstrate a very similar increase for the same 
temperatures (not shown here). Fig.11 illustrates that the 
decrease of the water density results in an increased volume, 
assigned to the boundary atoms, and consequently to an 
increase of the intrinsic volume of the solute molecule. A 
stronger change of the water density results in a stronger 
increment of the volume in the 0-th Voronoi shell. 

In molecular biology, the contribution to the intrinsic 
volume, arising from increasing thermal motions at higher 
temperatures, leading to a change of the density, is called 

thermal volume [1,28]. Thus we can say that the increase of 
the thermal expansion coefficient of hIAPP in water at 350K 
is mainly related with an additional change of the thermal 
volume of the molecule, but not with conformational 
changes of the molecule itself. 

VI. CONCLUSION 
A simple method for the construction of shells around a 

solute molecule for the analysis of molecular-dynamic 
models of solutions is proposed. In the first stage, the 
Voronoi -Delaunay tessellation is calculated for the total 
ensemble of atoms of the solution. After that, consecutive 
Voronoi shells are defined, starting from the border between 
molecule and solvent, proceeding to the outside (into the 
solvent), as well as into the interior of the solute molecule. 
The shells are numbered by k = ... -2, -1, 0, 1, 2, 3, ... .  The 
0-th Voronoi shell corresponds to the atoms of the solute, 
which are adjacent to the solvent, and the 1-st one is defined 
by the solvent atoms which are nearest neighbors of the 
solute molecule. Positive numbers belongs to the shells 
outside the solute (in the solvent), negative numbers refer to 
shells inside the solute molecule. (It is assumed, that the 
solute molecule can be large). Each atom gets an index equal 
to the number of the Voronoi shell to which it belongs. 
These indexes are used to identify Delaunay simplexes, and 
to define Delaunay layers which characterize the void space 
between the atoms of neighboring Voronoi shells (also both 
outside and inside the solute molecule). 

Note the proposed decomposition on the Voronoi shells 
and Delaunay layers can be performed very fast. In 
particular, it needs negligible computational time as 
compared with calculation of the Voronoi-Delaunay 
tessellation if the data structure are represented as described 
in [23]. 

The temperature behavior of the Voronoi shells and 
Delaunay layers was investigated, using a molecular-
dynamic model for an aqueous solution of an amyloidogenic 
polypeptide (hIAPP). The non-trivial change of the thermal 
expansion coefficient was discussed. Our analysis suggests 
that this is the result of the influence of the surrounding 
water, but not of a conformational modification of the solute 
molecule itself. Specifically, one can say, that the thermal 
volume, which is located in the boundary layer between 
solute and solvent, produces an additional increase of the 
intrinsic volume of hIAPP with temperature. The situation 
can be different for other molecules. In particular, 
modification of internal voids and molecular morphology 
can also play a role. The presented method is a formalized 
instrument for such investigations.  

ACKNOWLEDGMENT 
Financial support from Alexander von Humboldt 

foundation and RFFI grant No.12-03-00654 is gratefully 
acknowledged. We thank M. N. Andrews and R. Winter to 
provide us with the data of their simulation runs. 

REFERENCES 
[1] T. V. Chalikian, “Volumetric properties of proteins”. Annu. Rev. 

Biophys. Biomol. Struct. vol. 32, 2003, pp. 207–235. 

101



[2] D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark, 
H.J.C. Berendsen, “GROMACS: Fast, Flexible, and Free”, J. Comp. 
Chem. vol. 26, 2005, p. 1701. 

[3] N.N. Medvedev, “Computational porosimetry“, in book Voronoi's 
Impact on Modern Science, Institute of Math National Acad. of 
Sciences of Ukraine, Kiev, Eds. P.Engel, H.Syta,1998. pp.165-175.  

[4] S. Sastry, T. M. Truskett, P. G. Debenedetti, S. Torquato, and F. H. 
Stillinger, “Free Volume in the Hard-Sphere Liquid”, Molecular 
Physics, vol. 95, 1998, p. 289.  

[5] G. Malavasi, M. C. Menziani, A.Pedone, U.Segre, “Void size 
distribution in MD-modelled silica glass structures”, Journal of Non-
Crystalline Solids, vol 352, 2006, pp. 285–296. 

[6]  S. Rémond, J. L. Gallias, A. Mizrahi, “Characterization of voids in 
spherical particle systems by Delaunay empty spheres”, Granular 
Matter, vol.10, 2008, pp. 329–334. 

[7] M. D. Haw, “Void structure and cage fluctuations in simulations of 
concentrated suspensions”, Soft Matter, vol. 2, 2006, pp. 950–956. 

[8] B.J. Sung, A. Yethiraj, ‘Structure of void space in polymer solutions”, 
Phys. Rev. E vol. 81, 2010, 031801. 

[9] M. G. Alinchenko, A. V. Anikeenko, N. N. Medvedev and V. P. 
Voloshin, M. Mezei, P. Jedlovszky, “Morphology of voids in 
molecular systems. A Voronoi-Delaunay analysis of a simulated 
DMPC membrane,” J. Phys. Chem. B, vol. 108 (49), 2004, 19056–
19067. 

[10] H. Edelsbrunner, M. Facello, J. Liang, “On the definition and 
construction of pockets in macromolecules”, Discr Appl Math, 
vol.88, 1998, pp. 83-102. 

[11] J. Liang J, H. Edelsbrunner, P. Fu, P. Sudhakar, S. Subramaniam, 
“Analytical shape computation of macromolecules: II. Inaccessible 
cavities in proteins”, Proteins: Struct. Func. Genet., vol. 33, 1998, pp. 
18-29. 

[12] D. Kim, C.-H. Cho, Y. Cho, J.Ryu, J. Bhak, D.-S.Kim, “Pocket 
extraction on proteins via the Voronoi diagram of spheres”, Journal of 
Molecular Graphics and Modelling, vol. 26 (7), 2008, pp. 1104-1112. 

[13] T.M. Raschke, M. Levitt, “Nonpolar solutes enhance water structure 
within hydration shells while reducing interactions between them”, 
PNAS, vol. 102 (19), 2005, pp. 6777–6782. 

[14] C. Schröder, T. Rudas, S. Boresch, O. Steinhausera, “Simulation 
studies of the protein-water interface. I.Properties at the molecular 
resolution” J. Chem. Phys, vol. 124, 2006, 234907.  

[15] B. Bouvier, R. Grünberg, M. Nilges, F. Cazals, “Shelling the Voronoi 
interface of protein-protein complexes predicts residue activity and 

conservation”, Proteins: Structure, Function, and Bioinformatics, vol. 
76(3), 2008, pp. 677 – 692. 

[16] G.Neumayr, T.Rudas, O. Steinhausera, „Global and local Voronoi 
analysis of solvation shells of proteins” J. Chem. Phys. vol. 133, 
2010, 084108. 

[17] V.P. Voloshin, N.N. Medvedev, M.N. Andrews, R.R. Burri, R. 
Winter, A. Geiger, “Volumetric Properties of Hydrated Peptides: 
Voronoi-Delaunay Analysis of Molecular Simulation Runs”, J. Phys. 
Chem. B, vol. 115 (48), 2011, pp 14217–14228. 

[18] A. Okabe, B. Boots, K. Sugihara, S. Chiu, Spatial tessellations - 
concepts and applications of Voronoi diagrams, New York: John 
Wiley & Sons, 2000. 

[19] Medvedev, N.N. “Voronoi-Delaunay method for non-crystalline 
structures. SB of Russian Academy of Science, Novosibirsk (2000) 
(in Russian) 

[20] F. M. Richards, “Calculation of molecular volumes and areas for 
structures of known geometry,” Methods in Enzymology, vol. 115, 
1985, pp. 440–464. 

[21] B. J. Gellatly, J. L. Finney, “Calculation of protein volumes: an 
alternative to the Voronoi procedure,” J. Mol. Biol., vol. 161, 1982, 
pp. 305-322. 

[22] S.V.Anishchik, N.N.Medvedev, “Three-dimensional Apollonian 
packing as a model for dense granular systems”, Phys.Rev.Lett., vol. 
75(23), 1995, pp.4314-4317. 

[23] N.N. Medvedev, V.P. Voloshin, V.A. Luchnikov, and M.L. 
Gavrilova, “An algorithm for three-dimensional Voronoi S-network”, 
J. Comput. Chem. vol. 27, 2006, pp. 1676–1692. 

[24] F. Aurenhammer, “Power diagrams: properties, algorithms and 
applications,” SIAM J Comput, vol. 16, 1987, pp. 78–96. 

[25] D.-S. Kim, Y. Cho, K. Sugihara, “Quasi-worlds and Quasi-operators 
on Quasi-triangulations”, Computer-Aided Design, vol. 42(10), 2010, 
pp. 874-888. 

[26] T. Aste, K.Y. Szeto, and W.Y. Tam, “Statistical properties and shell 
analysis in random cellular structures”, Phys.Rev.E, vol. 54 (5), 1996, 
pp. 5482-5492. 

[27] M. N. Andrews, and R. Winter, "Comparing the Structural Properties 
of Human and Rat Islet Amyloid Polypeptide by MD Computer 
Simulations", Biophys. Chem. vol. 156, 2011, pp. 43-50. 

[28] L. Mitra, N. Smolin, R Ravindra, C. Royer, R Winter. “Pressure 
perturbation calorimetric study of the solvation properties and the 
thermal unfolding of proteins in solution - experiment and theoretical 
interpretation”, Phys.Chem. Chem. Phys. vol. 8, 2006, pp. 1249–
1265. 

 
 

102


