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Abstract. A simple formalism is proposed for a quantitative analysis of intera-
tomic voids inside and outside a solute molecule in solution. It can be applied 
for the interpretation of volumetric data, obtained in studies of protein folding 
and unfolding in water. In particular, it helps to divide the partial molar volume 
of the solute into several components. The method is based on the Voronoi-
Delaunay tessellation of molecular-dynamic models of solutions. It is suggested 
to select successive Voronoi shells, starting from the interface between the so-
lute molecule and the solvent, and continuing to the outside (into the solvent) as 
well as into the inner of the molecule. Similarly, successive Delaunay layers, 
consisting of Delaunay simplexes, can also be constructed. Geometrical proper-
ties of the selected shells and layers are discussed. The temperature behavior of 
inner, boundary and outer shells is discussed by the example of a molecular-
dynamic model of an aqueous solution of the polypeptide hIAPP. 
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1 Introduction 

The volumetric properties of proteins in aqueous solution are most important for the 
understanding of their thermodynamic and structural behavior [1]. In particular, they 
help to understand the mechanism of protein folding in water at different temperatures 
and pressures. The influence of temperature and pressure induces changes of the vo-
ids, both inside the solute molecule, at its boundary, and also in the surrounding  
water. The knowledge of these contributions to the volume of the solution helps to 
validate propositions about the occurring conformational changes. However, using 
only experimental data, it is very difficult to separate these contributions. 

Computer simulations help to solve this problem. Models of the solutions are gen-
erated usually by molecular dynamic simulations, see for example Ref. 2. The next 
step is the analysis of the models: detection and characterization of interatomic voids 
and local densities.  
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There are very different approaches used for the analysis of voids in atomic and 
molecular systems. Some of them were developed for the investigation of the empty 
space between the atoms in liquids and glasses [3-6], granular matters and colloids  
[7,8], polymers and membranes [9,11]. Others are specialized to study cavities and 
pockets in large biological molecules [12-13]. Solvation shells [15,16] and the boun-
dary region between proteins are also studied [17,18]. Consecutive shells, consisting 
of Voronoi cells, were used for the analysis of the density of hydration shells around 
polypeptides in Ref. 19. However, we are not aware of articles, where the voids both 
inside and in the surroundings of a solute molecule were analyzed. Such investiga-
tions should be made by a single-stage method for all regions of the solution. Fortu-
nately, there is no necessity to develop a new method for such a work. At present, 
there is no doubt, that the most suitable and general method for the selection and 
analysis of voids and the local density in molecular system is an approach, which is 
based on Voronoi diagrams (the Voronoi-Delaunay method) [20,21]. 

In this work, we present a simple technique for the decomposition of the Voronoi-
Delaunay tessellation of a solution into shells (layers) related with the solute. It allows 
to characterize voids (local density) both inside, at the boundary, and outside the  
solute molecule. 

2 Voronoi-Delaunay Tessellation of a Solution 

Fig.1 shows a two-dimensional illustration of a solution model and its Voronoi-
Delaunay tessellation. Note, the size of the atoms should be taken into account, if one 
studies interatomic voids [3,22,23]. This means that the Voronoi tessellation should 
be calculated, allowing for the surface of the atoms. Thus we should deal with 
 S-tessellation [24,25] (additively weighted [20]), instead of the ordinary Voronoi 
tessellation (related with the atomic centers). In this case we make a more physical 
assignment of the empty space to a given atom, i.e. we include all points of space, 
which are closer to the surface of a given atom, than to the surfaces of all other atoms 
of the system. A simpler variant, which considers the atomic surfaces, is the well-
known power or radical tessellation [20,23,26]. In this case the assignment of the 
empty space to individual atoms is not quite physical, but it is easier to implement. 
The known complexities of the S-tessellation (theoretically possible disconnectedness 
of the tessellation and overlapping of Delaunay simplexes in some cases [21,25,27]) 
are not important for our molecular systems, where the size difference of the atoms is 
rather small (usually less than a factor of 2). In addition, these peculiarities of the S-
tessellation can be easily taken in to account at the calculation of the tessellation. In 
this work we use S-tessellation, however using radical, one obtains the same physical 
results [19].  

The molecules of the solvent (usually water molecules) are considered as uniform 
spheres, as it is usually done in structure analyses of computer models of water and water 
solutions. Note, the specific features of the interaction between water molecules (hydro-
gen bonds) are taken into account only in the stage of the molecular dynamics simulation, 
when they are essential to create a realistic model, but not in the geometrical analysis. 
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Fig. 1. Left: 2D illustration of a solution. Atoms of the solute molecule are shown by dark 
disks. Atoms of the solvent are pink (light). Right: Voronoi-Delaunay tessellation of the model. 
Thin (black) lines show Voronoi cells, thick (red) lines show Delaunay simplexes. 

The Voronoi-Delaunay tessellation is calculated for every configuration of the stu-
died model. All atoms (both of the solute and solvent) are treated as a single, non-
subdivided system in this stage. The calculation of the tessellation is straightforward 
now. Algorithms for the calculation of the S-tessellation were described in the litera-
ture, see e.g. [25]. Programs for the calculation of the power tessellation (as for ordi-
nary Voronoi-Delaunay tessellations) are available in standard geometrical libraries. 

For the processing of the tessellation, it is convenient to use the Delaunay network. 
The sites of this network are the atoms of the system, and the bonds connect adjacent 
atoms. Remember, adjacency on the Delaunay network means, that the Voronoi cells 
of a given pair of atoms have a common face, Fig.1. For the following applications it 
is convenient to establish, which atoms determine the vertexes of the Delaunay sim-
plexes. In this stage of the work, we will differentiate between the atoms of the solute 
and the solvent. 

3 Voronoi Shells 

Knowing the adjacency of the atoms (Delaunay network), one can begin the selection 
of the Voronoi shells around the solute molecule. 

3.1 Selection of the Boundary Voronoi Shells 

The boundary Voronoi shell can be selected according to the following algorithm:  

Go over all atoms of the solute molecule and find the atoms, which are adjacent to at 
least one atom of the solvent. Record the numbers of these atoms. 

Thus we establish the atoms of the solute molecule, which are in direct contact 
with the solvent, and simultaneously, the atoms of the solvent which are in contact 
with the solute. The former represent the boundary atoms of the solute, and the latter 
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define the nearest solvation shell. Let us assign indexes 0 and 1 to these atoms, and 
call these groups of atoms (and their Voronoi cells) as 0-th and 1-st Voronoi shells, 
see Fig.2. Let us denote the number of atoms in the shells as N0 and N1. The volume 
of the shells (V0 and V1) can be calculated as the sum of the volumes of the Voronoi 
cells in a given shell. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Illustration of the 1-st and the 0-th Voronoi shells. All atoms with index 1 have at least 
one atom of the solute as a neighbor. All atoms with index 0 have at least one atom of the sol-
vent as a neighbor. If there are no solvent atoms inside the solute, both Voronoi shells are simp-
ly connected (left). The existence of solvent atoms inside the solute results in a not simple 
connectivity of the shells. See shells 1 and 1′ (right). 

 

    

 

 

 

 

 

 
 

Fig. 3. The 1-st (red) and the 0-th (black) Voronoi shells are presented as clusters on the Delau-
nay network for the models shown in Fig.2. Selected atoms are shown by large points and 
squares. 

Usually both of these shells are simply connected, Fig.2 (left). However, if some 
atoms are inside the solute (this means, that the set of solvent atoms is not simply 
connected on the Delaunay network), the 1-st shell is also not simply connected.  
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The existence of water molecules inside the solute protein molecule has a special 
interest in biology. One can see, our technique can be used to find such molecules in 
computer models. Simply, one should make a standard analysis of the clusters on the 
Delaunay network. If the selected (colored) sites (the atoms with index 1) represent a  
simply connected cluster, then water inside the solute is absent. 

Fig.3 demonstrates our Voronoi shells as clusters on the Delaunay network. In the 
first case they are simple connected, Fig.3 (left). If there is a water molecule inside 
the solute, there is a more complicated situation Fig. 3 (right). 

Note, it is obvious, that when the solute molecule is simply connected on the  
Delaunay network, then the 0-th Voronoi shell is also simply connected. 

3.2 Calculation of Subsequent Voronoi Shells 

The 2-nd Voronoi shell is defined by the solvent atoms which are neighbors of the 1-
st shell (adjacent to atoms with index 1). Let us assign index 2 to these atoms. Ob-
viously, none of these atoms are in contact with atoms of the solute, else it could be 
assigned to the 1-st shell. 

Similarly, we can select outer neighbors of the 2-nd shell. They define the 3-rd Vo-
ronoi shell and get index 3. To continue further, all subsequent Voronoi shells can be 
selected, and called the 4-th, 5-th, ... k-th ... and so on, up to the maximum, that is 
permitted by the model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. 2D illustration of Voronoi shells outside and inside a big solute molecule. Only boun-
dary atoms of the molecule are shown schematically. The digits show the numbers of the shells. 
The inner shells have negative numbers. They may be not simply connected. 

From a mathematical point of view, the Voronoi shells correspond to the consecu-
tive topological neighbors on the Delaunay network, see for example Ref. 28 and 
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references there. However, the selection of the neighbors usually begins from a single 
(central) site (Voronoi cell). In our case we start from the boundary atoms of the so-
lute molecule. If the 1-st Voronoi shell is simply connected, all subsequent shells are 
also simply connected. However, the shape of the Voronoi shells can be very different 
and is determined by the morphology of the solute molecule. Protein molecules have 
usually a globular shape. In this case the 0-th, 1-st and other Voronoi shells (unders-
tood as unions of the Voronoi cells with equal index) are isomorphic to a spherical 
layer. However, in the case of a torus-like molecule, containing a ring of atoms, sol-
vent molecules can be located in the interior of this ring. In this case the first Voronoi 
shells will also be tori. 

Note, the Voronoi shells do not contain “through holes”, i.e. going from the (k-1)-
th to the (k+1)-th shell, one will be obligated to traverse the k-th shell. This is an ob-
vious consequence of the Voronoi shell definition. Indeed, the k-th Voronoi shell is an 
obligatory “intercalation” between these shells: it is derived from the (k-1)-th, and 
generates the (k+1)-th one. 

Let us consider now the Voronoi shells, which are constructed, when proceeding 
from the 0-th shell into the interior of the molecule. All internal neighbors of the 0-th 
shell represent the -1st (minus first) Voronoi shell, Fig.4. The atoms of this shell have 
index -1. None of these atoms contact the solvent, else it would belong to the 0-th shell. 
Similarly, one can select inner neighbors of the -1st shell. They represent the-2nd  
(minus second) Voronoi shell, and its atoms get the index -2. By continuing this, one 
can determine all subsequent “negative” shells, until all atoms of the molecule are 
covered. These shells can have a more complicate topology than the outer ones. In 
particular, they can be not simply connected, in spite of a simply connected 0-th shell, 
Fig.4. 

Thus, we decomposed the solution into shells in relation to the surface of the solute 
molecule. This decomposition is unambiguous: no atom (Voronoi cell) is unconsi-
dered, and none are taken into account twice. 

For each Voronoi shell different characteristics can be calculated, e.g.: the number 
of atoms Nk ; the volume Vk, defined as the sum of the volumes of all Voronoi cells of 
the shell, the mean volume of the Voronoi cell vk = Vk,/ Nk, the inner and outer surface 
areas Sk-1 and Sk, which are calculated as the sum of the area of the boundary Voronoi 
faces. Since the outer surface of a given shell is the inner one for the following shell, 
it is sufficient to speak of intermediate surfaces Sk-1,k. One can propose also other  
characteristics of the Voronoi shells, e.g. the empty volume, and so on. 

Every configuration of the solution is characterized by a set of numbers, in particular: 
the numbers of atoms in the Voronoi shells 

... N-2, N-1, N0, N1, N2 ..., 

the shell volume values  

...  V-2, V-1, V0, V1, V2, ..., 

the areas of the intermediate surfaces  

...  S-2,-1, S-1,0, S0,1,  S1,2,  S2,3  ....., 

and so on.  
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4 Delaunay Layers 

4.1 Selection of the First (Boundary) Delaunay Layer 

We can classify the Delaunay simplexes by using the indexes of the Voronoi shells. 
Let us define thus the index I of a given Delaunay simplex as the sum of the Voronoi 
shell indexes of the atoms at its vertexes: 

I= i1+i2+i3+i4 

Remember, the Delaunay simplex is formed by “mutually close” atoms, all of them 
are first topological neighbors. This means that the difference between the atomic 
indexes i cannot be greater than 1. 

Atoms of the 0-th and 1-st Voronoi shells can form the following simplex indexes: 

I= 0    (all simplex vertexes are located on the solute molecule:  0+0+0+0); 
I= 1    (three vertexes on the solute and one on solvent: 0+0+0+1); 
I= 2    (correspondingly: 0+0+1+1); 
I= 3    (correspondingly: 0+1+1+1); 
I= 4    (all vertexes are on solvent molecules: 1+1+1+1). 

We will call the union of Delaunay simplexes with the same index I as Delaunay 
sub-layer I. The sub-layers 0 and 4 are produced by atoms of the same Voronoi shells. 
They are result of “folds” of the Voronoi shells, and do not play a principal role in our 
analysis. Moreover they can be absent in some models. We will discuss such sub-
layers in more details below. More important are the sub-layers, whose vertexes are 
both on the 0-th and 1-st Voronoi shells (I=1,2,3). The union of these simplexes 
represents a shell (layer) between the atoms of solute and solvent. We call this shell 
the 1-st Delaunay layer. 

I=2I=1

I=0

I=3

 

Fig. 5. 2D-illustration of the first Delaunay layer for the model shown in Fig.2 (left). Separate 
Delaunay sub-layers and their unions are shown at the right. 

Fig.5 shows a two-dimensional illustration of these Delaunay constructions. In a 
plane a Delaunay simplex has three vertexes, thus there are only four different  
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simplex indexes: I=0,  (0+0+0);  I=1,  (1+0+0);  I=2,  (1+1+0) and I=3  (1+1+1), and 
the first Delaunay layer is presented by two sub-layers, (I= 1 and 2). 

It is significant that the union of Delaunay simplexes, the vertexes of which are 
both on the solute and solvent, represent a solid shell, i.e. at no point its width is equal 
to zero. For separate sub-layers this is not true. The thickness of a sub-layer degene-
rates into a point at the common vertexes, see Fig.5. (In 3D a zero width can also be 
along a common simplex edge). 

 

Fig. 6. Illustration of the first Delaunay layer of a one-atomic solute. It consists of Delaunay 
simplexes with one index only: I=2,  (0+1+1), and represents the area between the solute and 
the solvent particles. 

The first Delaunay layer characterizes the void space between the atoms of the so-
lute and solvent. This important feature of the Delaunay layer is also valid, if some 
sub-layers are absent, see for example the one-atomic solute, Fig.6. 

4.2 Calculation of the Subsequent Delaunay Layers 

Let us consider Delaunay simplexes between the (k-1)-th and k-th Voronoi shells. 
They produce the indexes:  

I = 4k-4,  (k-1+k-1+k-1+k-1); 
I = 4k-3,  (k-1+k-1+k-1+k); 
I = 4k-2,  (k-1+k-1+k+k); 
I = 4k-1,  (k-1+k+k+k); 
I = 4k,  (k+k+k+k). 

The simplexes with indexes 4k-3, 4k-2 and 4k-1, whose vertexes are positioned on 
atoms of both Voronoi shells, represent a solid shell between the atoms, and define 
the K-th Delaunay layer. In this case K=k. The simplexes with index I=4k-4 had been 
obtained already in the calculation of the previous, (K-1)-th Delaunay layer, and the 
index I=4k will appear once more in the calculation of the next (K+1)-th Delaunay 
layer. For the sake of definiteness, we will assign sub-layer 4k to the K-th Delaunay 
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layer. In this case all Delaunay simplexes will be assigned to the Delaunay layers 
unambiguously. 

We can also select Delaunay simplexes inside the solute molecule. They manifest 
the inner Delaunay layers. 

The 0-th and -1-st Voronoi shells define simplex indexes: 

I =  0,  (0+0+0+0); 
I = -1,  (-1+0+0+0); 
I = -2,  (-1-1+0+0); 
I = -3,  (-1-1-1+0); 
I = -4,  (-1-1-1-1). 

The union of sub-layers  -1,-2,-3  represents the 0-th Delaunay layer. We should al-
so add sub-layer I =  0 to this layer, and sub-layer I = -4 will be assigned to the -1-st 
Delaunay layer. If there is a -2-nd Voronoi shell, then one can define the -1-st Delau-
nay layer, which consist of sub-layers -4, -5, -6, -7. Sub-layer -8 will be related to  
the next “negative” Delaunay layer (-2-nd). We can continue this procedure until all 
Voronoi shells inside the solute molecule are covered. 

Thus, Delaunay layers are defined unambiguously by the Voronoi shells and 
represent an additional method for the decomposition of the Voronoi-Delaunay tessel-
lation of the solution both inside and outside the solute. 

Every Delaunay layer can be characterized, for example, by a volume DK, calcu-
lated as the sum of its Delaunay simplex volumes. For physical applications it can 
also be interesting to know the empty volume EK of the layers. In this case one sums 
the empty volumes of the simplexes (without the volume occupied by the atoms). 

Every configuration of the solution can be characterized by sets of Delaunay layer 
parameters, in particular, by the volumes: 

...  D-2, D-1, D0, D1, D2, ..., 

and/or the empty volumes: 

...  E-2, E-1, E0, E1, E2, ... 

and so on. 

5 Examination of an Aqueous Solution of the Polypeptide 
hIAPP 

Molecular-dynamic models of a single amyloidogenic polypeptide molecule (hIAPP) 
(Fig.7) in aqueous solution had been generated in Ref. 29, and had been used for the 
calculation of volumetric characteristics in Ref. 19. The solute molecule contains 462 
heavy atoms (i.e. without hydrogen atoms) and is surrounded by 10843 water mole-
cules. Production runs of up to 500 ns each were performed for 11 different tempera-
tures from 250 to 450 K. For the analysis, 1000 independent configurations, equally 
spaced over the last 200 ns (every 200 ps) of the equilibrated production runs, were 
used for averaging. 
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These models can be decomposed properly into five consecutive Voronoi shells: k 
= -1, 0, 1, 2, 3. Shell -2 appears not in every configuration, therefore we do not ana-
lyze it specially. We calculated also the 4-th and 5-th Voronoi shells. However the 
linear dimension of these shells exceeds half of the model box in some configurations. 
An analysis of these shells could be problematic, because of the periodic boundary 
conditions used for our models. Although, as we found, all distant shells (beginning 
from the 2-nd) behave similarly, and are in accordance with bulk water. 

 

Fig. 7. A configuration of the hIAPP molecule in aqueous solution. Water molecules are not shown. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. Voronoi shell volumes as a function of temperature. From bottom to top: the shells with 
the numbers from -1 to 2. In the center (blue): the total Voronoi volume of the hIAPP molecule 
(intrinsic volume). 
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Fig.8 demonstrates the temperature dependence of the volumes for the Voronoi 
shells with numbers -1, 0, 1 and 2. The total Voronoi volume of the molecule is also 
shown in the central diagram of Fig .8. In our approach it is calculated as the sum of 
the volumes of all inner Voronoi shells: -2, -1 and 0. It represents the intrinsic volume 
of hIAPP [1,19,30], i.e. the volume “assigned” to a solute molecule in solution. It 
includes the van der Waals volume of the molecule as well as the volume of voids 
assigned to the molecule: all voids inside the molecule plus a part of the surrounding 
empty space. 

The volumetric calculations performed in Ref. 19 gave exactly the same behavior 
for the intrinsic volume of hIAPP. The increase of this volume with temperature is 
natural, however the growth rate (slope of the curve) is larger at temperatures higher 
than 350K, see Fig.8 (and also Fig.16 in Ref. 19). The previous analysis cannot ex-
plain this change of the thermal expansion coefficient. The present decomposition 
into selected Voronoi shells helps to clarify the situation. 
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Fig. 9. Empty volume of the Delaunay 
layers in aqueous solution of hIAPP as 
function of temperature. From bottom to 
top: the layers from K=0 to K=2. 

Fig. 10. The number of atoms in the Voronoi 
shells from k= -1 to k=2 (from bottom to top) 

 

The following considerations can lead to an explanation of the observed tempera-
ture behavior of the intrinsic volume of hIAPP in aqueous solution. At first, one could 
imagine, that some structural changes occur inside the molecule at higher tempera-
ture, which result in an additional increase of the interatomic voids. In our analysis, 
the -1-st Voronoi shell and the 0-th Delaunay layer belong to the molecular interior. 
However, there is no increase of the volume of these shells after 350K, see Fig.8 and 
Fig.9. Instead, one can see an increase of the volumes of the 0-th Voronoi shell and 
the 1-st Delaunay layer, which are at the border of the molecule. This could be ex-
plained by assuming that more atoms of the solute come into contact with the solvent 
at higher temperatures (for example by unfolding). In fact, the boundary atoms  
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involve some volume from outside, thus an increase of the number of these atoms 
should result in an increase of the intrinsic volume of the molecule. However, as one 
can see in Fig. 10, the numbers of atoms in the Voronoi shells have no tendency to 
increase with temperature. This means that the additional increase of the intrinsic 
volume cannot be explained by conformational changes (as the unfolding of the  
molecule). We calculated the gyration radius of the molecule and indeed, the fraction 
of “elongated” configurations increases slightly with temperature. However, this  
is not the reason for the change of the intrinsic volume: when calculating the correla-
tion coefficient between gyration radius and intrinsic volume, we found that it is  
negligible. Its value is less than 0.01 at 350K and decreases at higher temperatures. 

Based on these considerations, we suppose that the origin of the additional increase 
of the intrinsic volume of hIAPP at high temperature is the density decrease of the 
surrounding water. Indeed, the water density changes faster above 350K than at lower 
temperatures, see Fig.11. This can be also seen for the 1-st and 2-nd Voronoi shell in 
Fig. 8. The next shells (k=3,4,5) demonstrate a very similar increase for the same 
temperatures (not shown here). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11. Temperature behavior of the density of bulk SPC/E water used in Ref. 29 (squares, 
right axis) and the mean volume of the Voronoi cells of the water molecules, <v0> = 1/ρ (cir-
cles, left axis). Straight lines approximating the curve show schematically the stronger chang-
ing of density at higher temperature.  

Fig.12 illustrates that the decrease of the water density results in an increased vo-
lume, assigned to the boundary atoms, and consequently to an increase of the intrinsic 
volume of the solute molecule. A stronger change of the water density results in a 
stronger increment of the volume in the 0-th Voronoi shell.  As one can see in Fig. 8, 
the total changing (~ 0.6nm3) of the of the intrinsic volume of the hIAPP molecule in 
the interval from 250 to 450K is practically the same as for its 0-th Voronoi shell. 
This confirms additionally that the structural changes in the closest surroundings are 
responsible for the increase of the intrinsic volume of the molecule. Fig.12 illustrates 
such a possibility. 
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In accord with suggestions from molecular biology we subdivide the partial molar 
volume (apparent volume) of a dissolved bio-molecule into two major contributions: 
the intrinsic and the thermal volume. The intrinsic volume we calculate as the Voro-
noi volume of the solute molecule (see above). It contains small pores in the interior 
of the bio-molecule as well as void space between the molecular atoms. The thermal 
volume is considered to be the additional empty space surrounding the bio-molecule, 
which results from mutual molecular vibrations and reorientational motions of solute 
and solvent, or, in other words, extra voids in the interface between solute and solvent 
due to imperfect packing of solvent molecules near the the solute [1, 30, 31]. In our 
geometrical approach this area can be represented by the first Delaunay layer, see 
Fig.13. The empty volume of the first Delaunay layer can be used to characterize the 
thermal volume.  

 
 
 
 
 
 
 
 
 
 
 

Fig. 12. Left: a fragment of the boundary area between molecule and solvent (from Fig.2). The 
0-th Voronoi shell is marked and colored (light blue). Right: the same part of the boundary area 
but with the lower density of the surrounding water. The dotted line shows the new border 
between molecule and solvent. One can see, the volume of the shell is increased in comparison 
with the previous situation. 

 

Fig. 13. A fragment of the first Delaunay layer for the model in Fig.12 (between thick read 
lines). Black thin line shows the Voronoi border between molecule and solvent. The empty 
space inside the Delaunay layer is shown in green. The dark-green area belongs to the  
molecule, light-green area belongs to the solvent.  
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However in our Voronoi-Delaunay decomposition, each Delaunay layer belongs to 
two neighboring Voronoi shells. Thus the intrinsic volume of the dissolved molecule 
in our definition includes a fraction of the thermal volume (dark - green in Fig.13), the 
other part of the intermediate free volume (light-green) belongs to the solvent. 

Having said that, we can state, that the increase of the thermal expansion coeffi-
cient of hIAPP molecule in water is mainly related with a change of the thermal  
volume, but not with conformational changes of the molecule itself. 

6 Conclusion 

A simple method for the construction of shells around a solute molecule for the analy-
sis of molecular-dynamics models of solutions is proposed. In the first stage, the  
Voronoi-Delaunay tessellation is calculated for the total ensemble of atoms of the 
solution. After that, consecutive Voronoi shells are defined, starting from the border 
between molecule and solvent, proceeding to the outside (into the solvent), as well as 
into the interior of the solute molecule. The shells are numbered by integers k = ... -2, 
-1, 0, 1, 2, 3, ... . The 0-th Voronoi shell corresponds to the atoms of the solute, which 
are adjacent to the solvent, and the 1-st one is defined by the solvent atoms which are 
nearest neighbors of the solute molecule. Positive numbers belongs to the shells out-
side the solute (in the solvent), negative numbers refer to shells inside the solute mo-
lecule. (It is assumed, that the solute molecule can be large). Each atom gets an index 
equal to the number of the Voronoi shell to which it belongs. These indexes are used 
to identify Delaunay simplexes, and to define Delaunay layers, which characterize the 
void space between the atoms of neighboring Voronoi shells (also both outside and 
inside the solute molecule). 

Note, the proposed decomposition into Voronoi shells and Delaunay layers can be 
performed very fast. In particular, it needs negligible extra computational time in 
comparison with the calculation of the Voronoi-Delaunay tessellation, if the data 
structures are represented as described in Ref. 25. 

The temperature behavior of the Voronoi shells and Delaunay layers was investi-
gated, using a molecular-dynamic model for an aqueous solution of an amyloidogenic 
polypeptide (hIAPP). The non-trivial change of the thermal expansion coefficient was 
discussed. Our analysis suggests that this is the result of the influence of the surround-
ing water, but not of a conformational modification of the solute molecule itself. Spe-
cifically, the thermal volume, which is located in the boundary layer between solute 
and solvent, plays a major role in the increase of the intrinsic volume of hIAPP with 
temperature. 

The situation can be different for other molecules. In particular, modification of in-
ternal voids and molecular morphology can also play a role. The presented method is 
a formalized instrument for such investigations. 
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