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A general dehition of the salt molecule for any asymmetric polyvalent electrolyte in solution is 
given which fulfils the requirement that the solute mass flux in the presence of an electric field 
strength vanishes when referred to the proper representative point of the molecule. Effectively this 
is the definition of the mass flux in the microscopic representation of an electrolyte solution. The 
electric current density arising from a gradient in the chemical potential also vanishes wheu referred 
to the same representative point. Time integrals over the velocity cross-correlation functions have 
been calculated for aqueous NaCl, LiCI, CaCI2 and 33aClz solutions using conductivity data, transport 
numbers and mutual diffusion coefficients fulfilling the above requirements. A first approximation 
is also given for the calculation of velocity correlation coefficients in the case where transport numbers 
are not available. 

In a number of previous papers lm3 we have reported time integrals over velocity 
cross-correlation functions 

ViC,NY 
f i i  = - (vy)(O) vg) ( t ) )  dt i = a, c 

3 0  s 
v,c,NV * 

<v(1‘)(0) vy’(t)> dt i , j  = c, a i # j 
3 0  s fij = - 

for aqueous electrolyte solutions in the concentration range 0 < &/moldm-3 < 4. 
The salt may be any electrolyte which ionizes in a solvent w (water), to give v, anions 
(a) of valence z, and v, cations (c) of valence 2,. c, is the salt concentration in 
mol ~ r n - ~ ,  N is Avogadro’s number, V is the solution volume and vy)( t )  (i = a, c) 
denotes the velocity of particle n of constituent i at time t. The velocities uti)(t)  are 
measured relative to the laboratory (or cell) coordinate system; they are vector 
quantities, but for simplicity we omit vector notation. As usual the pointed 
brackets represent the ensemble average. 

The three independent quantities given by eqn (1) and (2) were calculated from 
experimental values of the equivalent conductance, A, the transport number of the 
cation, t,, and the mutual diffusion cmEcient of the salt against water, D,. The 
quantity D,, describes the flux of a neutral substance, the dissolved salt, whereas the 
transport number is a quantity which describes the motion of a single ionic species 
under the action of the electric field; the microscopic representation of the electric 
current consists of the separate motion of ionic species. In order to incorporate the 
mutual diffusion data in the treatment it was necessary to generalize the concept of a 
molecule to a solution of a strong electrolyte, i.e., to a situation where the intra- 
molecular distances of the anions and cations are not constant. For the transport 
properties considered here, the velocity of the salt molecule is of particular interest ; 
this velocity will be given in terms of the velocities of the cations and anions belonging 
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136 VELOCITY CORRELATIONS I N  AQUEOUS ELECTROLYTE S O L U T I O N S  

to the molecule. In our previous work we used the following expression connecting 
the instantaneous ionic velocities with the instantaneous molecular velocity 

where D, and Da are the self-diffusion coefficients of the cation and anion, respec- 
tively. 

D~ = 3 J: <u(1')(0) vy)(t)> dt i = c, a. (4) 

Eqn (3) was chosen in such a form that in the limit of high salt dilution the correct 
limiting value for D,, results : 

which represents the well-known Nernst limiting formula when the self-diffusion 
coefficients are replaced by the ionic equivalence conductances Li using the relation 

where P is the Faraday constant. 

however, it is not yet clear which condition 

Di = RPRT/(zilP2 (i = c, a) 

Thus there is no doubt that eqn (3) is correct at very low salt concentrations; 

has to apply at high salt concentrations. In the meantime this condition has been 
worked out for 1-1  electrolyte^.^ We require that the quantity 

must vanish at all concentrations, i.e., 
A = 0 0 < C, < csat 

where csat is the saturation concentration of the salt. The validity of eqn (7) is a 
consequence of the requirement that the salt molecule is electrically neutral ; thus 
in a homogeneous solution (c, = const.) there cannot be any mass transport under 
the action of electric field strength. It appears that the application of the molecular 
velocity definition eqn (3) in general does not satisfy eqn (7). Only in the case that 
the cations and anions involved are not strongly hydrated was eqn ('7) found to be 
approximately fulfilled. These are the ions K+, Cs+, Cl- and I-, typically those ions 
which are usually characterized as being structure-breaking. The chlorides of Na+, 
Li+, Ca2+ and Ba2+ showed distinct deviations from eqn (7). 

that for symmetrical electrolytes the quantities 
Dc and Da in the numerator of eqn (3) have to be replaced by* 

It has been shown elsewhere 

D , + P  i = c, a 
where 

in order to guarantee the validity of eqn (7) for all concentrations. 
* In ref. (5) the quantity S* is denoted by 6. 
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A .  GEIGER A N D  H .  G .  HERTZ 137 
The present paper has three purposes : (i) To generalize the correction given in 

eqn (8) in such a way that we write : 

In particular we shall investigate the choice 
6, = 6 
6, = -6. 

The use of eqn (Sa) and (8b) rather than eqn (8) has only practical reasons; in this 
way singularities of the function ( O f  + P ) - l  are avoided. (ii) To work out the correct 
formulae for non-symmetric electrolytes. (iii) To recalculate the velocity correlation 
coefficients faa, f c 0  fac as defined by eqn (1) and (2) using the new definition of the 
molecular velocity for the salts NaCl, EiCl, CaCl, and BaCl,. The behaviour of 
the newLj remains practically the same as previously reported.2* 

THEORETICAL 
MASS FLUX AND ELECTRIC C U R R E N T  DENSITY: GENERAL 

We consider a binary electrolyte solution consisting of any polyvalent electrolyte 
and water. In the microscopic representation of this system the instantaneous 
velocities of the cations are 

and the instantaneous velocities of the anions are 

u p ,  u p y  u p y  . . . a,& (a) 

where N ,  = VcsN. 

in the system; j: is defined by the relation 
There may be a inacroscopic (i.e., observable) mass flux of the solute,jf = j f  (Y, t ) ,  

(10) - -  a’s - -div j z  
at 

together with j :  = 0 at those positions where grad ps = 0 and ps is the partial mass 
density of the solute. According to eqn (10) j $  is defined in the laboratory (or cell) 
coordinate system. Having j $  at each point, it is easy to transform jz to a centre 
of volume fixed reference 

There may also exist an electric current density jq at each point of the system. 
jq is connected with the rate of increase of the local internal energy; it may be 
measured via, e.g., its magnetic field. The microscopic representation of the instan- 
taneous electric current density of the system is 

the solute mass flux is then denoted by j , .  

1 
Jq = ,(q,Vp+q,up+q,vy’+ . . . + q a u ~ ’ + q a u ~ ) + q a u p +  . . .). (1 1) 

g, and q a  are the electric charges of the cation and anion, respectively. We have 

where --e is the charge on the electron. z, and 2, are related to one another 

z,v, = zava 
so that the salt molecule is electrically neutral. The velocities in eqn (11) are not 
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138 VELOCITY CORRELATIONS I N  AQUEOUS ELECTROLYTE SOLUTIONS 

entirely independent : a volume element which is macroscopically small has to remain 
electrically neutral 

Z,CL(t) = z,cL(t) 
where c;(t) ; i = c, a, are the instantaneous number densities of cations and anions. 

The instantaneous mass flow density in the microscopic representation is given by 
the relation 

where mc and ma are the masses of the cation and anion, respectively. v$) is the 
instantaneous velocity of the kth molecule. Now, as has already been described 
in the introduction [see eqn (3), (8), (8a) and (8b)], we write $1 in terms of the instan- 
taneous velocities of the v, cations and v ,  anions as the following relation :l* 

This then implies that the rnicroscapic representation of the instantaneous solute 
mass flux is defined as the quantity : 

In eqn (14a) and (14b) 6 -+ 0 as c, +. 0 ;  then these expressions lead to the correct 
limiting behaviour for c, 4 0 as given in eqn (5).l' 

According to the results of the linear response theory' the observable mean 
electric current density is 

and likewise the observable mean mass flow density is 

jm = - 
3kT 

where A is the time derivative of the effective perturbation energy connected with the 
flux in question, the time dependence being given by the microscopic motion of the 
system in the equilibrium state. 

We consider here two kinds of perturbation energy : (1) the electrostatic one 

A,, = (q,rr)+ qcrp)+ . . . + q,ry)+ q , r f )  + . . .)& (17) 
where rii) (i = c, a) is the position of the Zth cation or anion, 8 is the gradient of the 
macroscopic electric potential (i.e., the electric field strength) ; (2) the thermo- 
dynamic one 

A m  = - ( v c m c + v a m a ) ( y l + ~ 2  +Y, + * -1 grad PZ (18) 
where the meaning of the yk is that the mass of the kth molecule is to be placed at 
yk, k = 1,2, . . . N,. p,* is the specific chemical potential of the solute. Since the 
gradient of the latter quantity is always connected with the gradient of the specific 
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A .  GEIGER AND H .  G .  HERTZ 139 
chemical potential of the solvent, A ,  contains a factor 1 + p s / p w  which we omit for 
simplicity.6 pw is the partial mass density of the solvent water. NQW we may 
insert both the quantities eqn (17) and (18) in eqn (15). This then gives two kinds of 
electric current density ; one connected with 8 and another with grad ,us*. Likewise, 
substitution of eqn (17) and (18) in eqn (16) yields the corresponding two kinds of 
mass flux. We begin with eqn (16). 

MASS FLUXES 

First we must find Ael.  It follows from eqn(l3) and (14a) that the position of the 
kth salt molecule is 

y k  = [ ( Y o  f V a ) ( V c D ,  k = 1 , 2 . .  . N ,  (19) 

where r?’ = r$),  r la) = r g )  are the positions of the Zth cation and anion, respectively ; 
then t$) = ~$1, j k  = uf) ,  where vector notation has again been dispensed with for 
simplicity. However, according to eqn (17) the contribution to the potential energy 
of a salt molecule due to the electric field strength 8 is 

The essential feature of eqn (14a) is the redistribution of weights of the cationic and 
anionic velocities. Usually the cation is strongly hydrated and as a consequence 
the thermal motion is more strongly damped. To compensate partly for this effect, 
in the expression for the total solute mass flux, the instantaneous cation velocity 
contribution is increased by a factor 

relative to that of the anions. Thus, the dynamical variable “ mass flux of the salt ”, 
apart from a multiplication by the mass, consists of a redistribution of weights to the 
instantaneous ionic velocities. However, if the velocities have different weights, 
then the forces must also be modified in the corresponding way. Thus, the effective 
potential energies of the cations and anions with respect to the dymmical variable 
mass flux are 

and, in order to obtain the total effective potential energy of the molecule, one must 
replace the field strength in eqn (20) by the effective field strengths which occur in 
eqn (21) and (22) as the factors of z,ergf and -z,er$). So we arrive at the effective 
perturbation energy of the system of N, points described by eqn (19) : 
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140 

We now form the time derivative of eqn (17) in which 8 = const. 
the result is : 

VELOCITY CORRELATIONS I N  AQUEOUS E L E C T R O L Y T E  SOLUTIONS 

With eqn (23) 

and we can introduce eqn (13), (14b) and (24) into eqn (16) to obtain : 

(u\,ui,> = Jb (v!?(O) ug) ( t ) )  dt 

for the intramolecular velocity correlations and 

i , j  = c, a I = 1 , 2  

(vfu{) = (u(l')(O) v i j ) ( t ) )  dt i ,  j = c, a I = 1 ,2  

Consider the case that all v, + v, ions axe tightly bound so as to form a molecule 

Then we have 

l: 
for the intermoleculm velocity correlations. 

in the conventional sense. 

D, = Da = ~ ( U ~ ~ U ( I )  i , j  = c ,a  I = 1 , 2  
and 

<vC,v;> = (uC,v;) = (u;u;)  = (u;u;). 

We set 6 = 0 and introduction of these relations into eqn (25) yields 

If there is an electrical field strength acting on a system containing dissolved neutral 
molecules, then no mass flux of the solute is observed ; this is a well-known result. 

When we insert the velocity correlation coefficients fee, faa and fa,, defined in the 
introduction, in eqn (25) and neglect the terms involving products of N, and intra- 
molecular cross-correlation coefficients, i.e., those containing (I${ vy j }  (i = c, a), 
the result is : 

j,, = 0. (26) 
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A .  GEIGER A N D  H .  G.  HERTZ 141 
We now choose 6 such that we obtain j,, = 0. If zc = Za and if zc # z, 

butfac = 0, then we find from the requirementj,, = 0 according to eqn (27) 

In the general case we proceed as shown below. 

the specific chemical potential. With eqn (18) and (19) we have : 
Next we give the expression for the mass flux which arises from the gradient of 

This expression we insert in eqn (16) together with eqn (13) and (14a) which gives the 
result for the mass flux (taking into account the factor 1 + p , / ~ , ~ )  

ELECTRIC C U R R E N T  DENSITY 

So far, we have given expressions for the mass fluxes. Next we turn to the 
corresponding formulae for the electric current density, see eqn (1 5). 

The instantaneous electric current density is given by eqn (11). If we consider 
the mean electric current connected with the gradient of the electric potential, then 
the potential energy involves direct coupling with each individual ion and not with a 
point representing a part of the molecule. Thus, we can apply eqn (17) as it stands 
and we have 

A,, = [ezc(vF) + vp) + . . .) - ez,(vl;') + u p )  + . . ,118. (3 1) 
Then combination of eqn (ll), (15) and (31) yields 

= K B .  

From eqn (32a) and (33) we obtain the expression for the reduced 
ductivi t y : 

ART Z A * = - - -  - Dc + f c c  - 2fac + ?(faa + Da) * 
ZcF2 ZC 

We now consider j,,:, the electric current density arising from the 
specific chemical potential. 

J 

(32b) 

(33) 
equivalent con- 

(34) 

gradient of the 
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for the velocities of the single ions : 

VELOCITY CORRELATIONS I N  AQUEOUS ELECTROLYTE SOLUTIONS 

A,.,., is given by eqn (29) and needs no further comment. In eqn (11) we write 

~2:) = jk+V(k(i') a = c, a (35) 
where 9, is the time derivative of the position given in eqn (19). 

u p  = 

is the velocity of the ion ki relative to the velocity of the point $.'a. Since all micro- 
scopic velocities occurring in the treatment are taken at equilibrium, the system is 
fully isotropic and thus we have 

< u p ' )  = 0. 
As a consequence, the mean microscopic electric current density carried by the vcNs 
representative points $1 and the vaNs representative points xia) is 

Combination of eqn (15), (29) and (36) then gives the result : 

Apart from the gradient of the chemical potential this is the s m  expression as eqn 
(27). Thus, if the quantity 6 is chosen such that the mass flux connected with the 
gradient of the electric potential vanishes, then, at the same time, the electric current 
connected with the gradient of the chemical potential vanishes. 

T R A N S P O R T  N U M B E R S  

For the total analysis we need the transport numbers which we introduce in the 
following way. If the boundary arrangements of the electrolyte solution are con- 
structed suitably (i.e.? if there axe electrodes), then in the presence of the electric 
current densityj, and in the non-uniform parts of the system, a variation of the solute 
partial density with time, dp,/dt, may be observed. We write this quantity in the form : 

The two quantities tc and ta are the transport numbers for the cation and anion, 
respectively. We consider them to be defined by a pair of excess constituent mass 
fluxes, j :  and j i  
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A .  GEIGER AND H.  G .  HERTZ 143 
We emphasize that our choice of a microscopic representation of the mass flux j z  
is such that j$  = 0 when grad j ~ :  = 0 even if G$ # 0. In contrast to this, the excess 
constituent mass fluxes j [  (i = c, a) do not have this property; they axe proportional 
to jq. Thus j ;  # 0 if 8 # 0. This is the justification of the designation " excess 
constituent mass flu ". The strict coupling between the two excess constituent 
fluxes is given by the relation 

ta+tc = 1 (41) 
which is a consequence of the requirement of electrical neutrality. With eqn 
(39)-(41), eqn (38) becomes : 

2' = - div j,* - div j b  - div j i  
at 

j* 
Fzcvc 

= - div j : -  -(vcMc + v,M,) grad t,. 

Integration of eqn (42) with respect to x gives 

xo and xl are two coordinates given by the apparatus. This equation allows the 
measurement of t,. One possibility is to measure the left-hand side and to arrange 
the set-up by adding another cationic species such that 

divj: dx = 0 1:: 
in the range of interest x1 < x c x2. Now in eqn (43) ti  = t,. This is the moving 
boundary method. Or we may have 

where the integration range 6x is a very thin layer at the electrode and j :  may be 
measured. Now in eqn (43) ti = t ,  = (1 - t,). This is the Hittorf method. Having 
thus established the procedure to measure the constituent excess mass fluxes, we 
need a microscopic representation of these fluxes. In order to find the correct 
answer we return to eqn (11) and write this expression in the following form : 

In the same way as each ion carries a fixed charge, so each ion also carries a fixed 
microscopic mass. Thus, the instantaneous electric current density is rigidly coupled 
with an instantaneous mass flow density. As a consequence, the microscopic 
representation of the electric current density is at the same time a microscopic re- 
presentation of some kind of mass flux. In particular, let us consider the two 
contributions J g )  and J$') as defined in eqn (44) separately. We can then say: 
the .Tt) (i = c, a), converted from a charge-characterized to a mass-chaxacterized 
form, are the microscopic representations of the excess constituent mass fluxes : 
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144 VELOCITY CORRELATIONS I N  AQUEOUS ELECTROLYTE SOLUTIONS 

Of course, in the equilibrium state we have SE) = J k )  = 0. The potential energy 
which acts as perturbation in order to cause J:) f 0 is again for each particle the 
product of the gradient of the electric potential with the corresponding coupling 
parameter, i.e., the electric charge. Thus, in order to calculate the mean value of 
J:)? we have to apply eqn (16) with the perturbation eqn (17) and the dymamical 
variable eqn (45a). The result is 

when the definitions of the velocity correlation coefficients are introduced. Equating 
this with the macroscopic definition of the excess constituent mass flux [eqn (39)], we 
obtain 

Finally, the combination of eqn (47) with eqn (326) yields 

Note that the mean values of the excess constituent fluxes axe not themselves directly 
observable quantities. Only the fact that the divergence of j :  is strictly coupled 
with the divergence of j :  

2, 2, - div jk = - div j :  
Mc Ma 

which gives 
grad tc = -grad t ,  

leads to dp,/dt  or j s  [uia eqn (43)] as quantities concerning the neutral solute, thus 
allowing the determination of t,. 

M U T U A L  DIFFUSION COEFFICIENT 

Finally, the mass fluxj, given by eqn (30) has to be connected with the experimental 
quantity dp,/a't introduced in eqn (10). The mass flux j: measured in the cell- 
coordinate system is 

- j z  = D,* grad ps (49) 
where Df is the mutual diffusion coefficient in the cell-coordinate system. 
other hand, j s  in eqn (30) may be written as 

On the 
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A .  GEIGER AND H .  G .  HERTZ 145 

where QSs is the phenomenological coefficient and D, is the diffusion coeficient of the 
solute in the local centre-of-mass fixed reference frame. The mutual diffusion 
coefficient in the volume fixed reference frame is 

and 
D,, = pT$D, 

0: = D,, 
- 

if volume changes during diffusion are absent. 
the solvent water. 
arrangement : ' 

V$ is the partial specific volume of 
Combination of eqn (50), (51a) and (30) yields, after some re- 

' (52) Dc + f c c  + 2vafac 
vc ~ { Dc+6 [(DE+S)(Da-6)lffYa 

and considering eqn (51b), (49) and (10) one sees that D,, is a measurable quantity. 
c$ and cs are the solute concentrations given in mol g-1 and mol ~ m - ~ ,  respectively, 
p is the total density of the solution (g c ~ n - ~ )  and y* is the mean activity coefficient 
of the solute. 

EVALUATION 

Next we introduce the following abbreviations : 

u = Da-tfaa 
v = Dc+fcc. 

Then combination of eqn (34) and (48) yields : 

(53) 
(54) 

fac = v-tCA." (55) 
and 

with 

Furthermore, in eqn (52) we set : 

Dsw(vaDc + VcDaXDa +Dc)cslcZ L =  
p(1 +c,*Ms)DaDC(l +c,* d In y*/dc,*)' (57) 

With these abbreviations and with eqn (53) and (54) eqn (52) can be written in the 
form : 

[v + A*( 1 - 2tc) Jc- 
Da-6 (58) 

L 2, v - tcA* -- 
[(D,  + 6)(Da - a)]+ + va 

- V C  ' j + 2 %  
Da + Dc 
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and the requirement 

VELOCITY CORRELATIONS I N  AQUEOUS ELECTROLYTE SOLUTIONS 

=jm, = 0 
according to eqn (27) takes the form : 

L, Da, D,, A* and t ,  are given as a function of the concentration; they are 
experimental quantities or directly obtainable from other experimental quantities. 
The two unknowns u and 6 then have to be determined such that they fulfil both 
eqn (58) and (59). For symmetrical electrolytes the situation simplifies. Now the 
right-hand side of eqn (59) equals zero and S = 6" [see eqn (28)]. In this situation 
6 = 6" according to eqn (28) can directly be introduced into eqn (58). The result is : 

or with eqn (56) 

(61) 
L ~ v , ( v  - t,A*) 

v(g-' + 1 )  + A*@- 2t,)c-' -(" 4- = ( V [ V  +A*( 1 -2tc)]c- '}fa 

From this equation v has to be determined as a function of the salt concentration. 
When v is available, then fa,, fc, and fac may be calculated using the set of eqn 

The numerical solution to eqn (61) was achieved by a standard Newton-Raphson 
iteration. To solve the system of the two non-linear eqn (58) and (59) for v and 6, 
a subroutine (library IMSL, computer system UNIVAC 1108) based on Brown's 
method was used. Tests insured that the stopping criterion for the iteration process 
gives a numerical accuracy in the results of at least six digits. 

(53)-( 5 6). 

FIRST APPROXIMATION FOR THE VELOCITY 
CORRELATION COEFFICIENTS 

So far we have used expression (14b) as the definition of the instantaneous 
solute mass flux in the molecular picture. The quantity 6 occurring in this formula 
was determined in such a way that the instantaneous electric current density and the 
instantaneous excess constituent mass fluxes are represented by eqn (11) and (451, 
respectively, and that at the s m e  time the solute mass fluxj, vanishes if grad p,* = 0, 
whatever the electrical potential gradient may be. The electric current density and 
the solute mass flux are well-defined quantities even if the excess constituent mass 
fluxes do not exist. This situation occurs in all those arrangements where the mass 
flux j ,  vanishes at the boundaries of the system. For an ordinary mutual diffusion 
experiment it is clear that, for the electric current density to be non-zero, one has to 
place the electrolyte solution in a capacitor with insulated plates and to charge the 
capacitor. During the charging process jq # 0 and, of course, if grad ,uz = 0 we 
also have j, = j,, = 0 whilst 8 # 0. In this case the excess constituent mass fluxes 
are undetermined and the mean displacements of a cation and of an anion are both zero. 
In contrast to this, when we have mass fluxes at the boundaries, excess constituent 
fluxes also exist and the mean displacement of a given ion does not vanish ; for instance, 
a cation undergoes a displacement in the direction of the cathode. 

Having no observation on which to fix the values of the excess constituent mass fluxes 
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the parameter 6 in eqn (14) and (14a) remains undetermined. We may then choose 
any &value with the property 6 -+ 0 as c, -+ 0 and, since the results for the velocity 
correlation coefficientsfcc,faa andfac depend on this choice, they axe no longer uniquely 
defined. The simplest approximation is to set 6 = 0 over the entire concentration 
range. Then the three unknowns fco faa and fac axe to be determined from the 
equivalent conductance, eqn (33), from the mutual diffusion coefficient according to 
eqn (52) (with 6 = 0) and from the condition j,, = 0 according to eqn (27) (again 
with 6 = 0). Since we do not need the transport numbers (for which in many cases 
experimental data for high concentrations axe not available) we call the V.C.C. obtained 
in this way " first approximation velocity correlation coefficients ". After some 
algebraic operations one obtains from eqn (27) with j,, = 0, 6 = 0, eqn (33) and 
eqn (52) : 

A* - D,, z -"(Fv)- '[( 1 -:$la - 2(DaDC)*] 

f c c  - ZC l + y  -- /- \ 2  

with 

U C  

F =  

v =  

f a c  = 

(?f+D?) 

Va+Vc 

faa is then given by eqn (32b). 
For the salts containing only structure-breaking or structurally indifferent ions 

the first approximation to the velocity Correlation coefficients provides the correct 
set off,,,faa andf,,.l* 2* 

RESULTS AND DISCUSSION 

In fig. 1 and 2 the results of the computation Offaa,fcc,fac and 6, using eqn (58) and 
(59) for the unsymmetrical electrolytes, and eqn (61) for the 1-1 electrolyte, together 
with eqn (53)-(56), are shown. The experimental data are the same as used in our 
earlier papers,,. where literature references are given. It is not the purpose of the 
present paper to discuss the physical meaning of the shapes of the curves shown in the 
figures. This has been amply done in the preceding papers of this ~eries.l-~g The 
results shown in fig. 1 and 2 are practically identical with those previously reported.2* 
The dashed curves in these figures represent the previous values in those cases where 
the deviation allows separate drawing. In all other cases the difference is smaller. 
So, obviously the fulfilment of the requirement j,, = 0 [eqn (231 is not of great 
importance for the final numerical results. We also applied eqn (61), which is only 
valid for symmetrical electrolytes, to the system CaCl, and BaCl,. The numerical 
results for faa, fac and fCc again are practically indistinguishable from the exact com- 
putations, only 6 is different. The 6 values of this approach are indicated as dotted 
curves in fig. 2. 
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In a further computation we examined the influence of the choice of 6 on the 
final results for the velocity correlation coefficients. Whereas the fully drawn curves 
in fig. 1 and 2 correspond to the choice 6, = 6, 6, = -6 and the dashed curves 
represent the results for 6 = 0 (using the t ,  values) we show in fig. 3 the resulting 
velocity correlation coefficients when one sets 6, = 6, = 6* [see eqn (8) and (9)]. 

-0.4c 
I I I 

I L  1 2 3 F 

+0.2 - 

-0.2 

-0.3- 

-0.4 - 

fac 

d 

faa 

fcc 
I I I 

2 3 
* 

1 

FIG. 1.-Velocity correlation coefficients fa,, fac and fcc for aqueous NaCl (a) and LiCl (b) solutions 
at 25°C. The salt molecule location parameter 6 is also given. The dashed curves are our previous 
results where the condition of vanishing mass fluxj,~ has not yet been fulfilled. Zs is the salt con- 

centration in mol dm-3. 

The qualitative behaviour is similar to that shown in fig. 1 and 2, but all curves are 
shifted in the direction of more negative values. However, the -6 values are much 
closer to the D,, D, values; in the CaC1, system at E =:4 mol dm-3 we have D, = - 6, 
which causes a singularity of (D,  + 6)-l. For this reason the choice 6, = 6,6, = - 6 
is preferred. 

Finally, in fig. 4 we give the first approximation to the velocity Correlation co- 
efficients as defined in the previous section. It may be seen from fig. 1, 2 and 4 
that the fac are almost identical in both representations, whereas the behaviour 
of fc, and faa is only qualitatively similar. In particular, the order of fc, and faa has 
changed, in fig. 4 Ifaa] > lfccl in all cases. This is due to the fact that we have D, > D ,  
and according to eqn (6) and ('7) (which approximately hold also for the 1-2 electro- 
lytes) faa/Da = f , , /Dc  when the excess constituent mass fluxes a.re undetermined. 
In contrast to this, when the excess constituent mass fluxes are fixed, expressed by 
a knowledge of the transport numbers, then the relative weight of the cations to form 
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rl 

L 

+0.1 

0 

- 0.1 
-0.2 

- 0.3 

- 0.4 

+ 0.2 
i i 

3 
t 

1 2 4 '  F 
+ 0.1 

0 

- 0.1 
- 0.2 

- 0.3 
-0.4 1 , I I 

1 

(6) 1 2 3 4 '  

25 
FIG. 2.-Velocity correlation coefficients fa,, faC andf, for aqueous BaCl, (a) and CaCI, (b) solutions 
together with molecule location parameter 6 (T = 25°C). The dashed curves are our previous results 
where the condition of vanishing mass fluxj,s has not yet been fulfilled. c, is the salt concentration 

in mol dm-3. For other details see text. 

i 1 1 t 

1 2 3 

FIG. 3.-Velocity correlation coefficients for aqueous solutions of NaCl (l), LiCl(2), CaCl, (3) and 
BaCl, (4) when computed with the location parameter S* (dot-dashed curves) according to eqn (8) 

and (9). Where curves are broken a* leads to a singularity (2' = 25°C). 
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the salt molecule is increased compared with that given by the friction property alone. 
This then also increases the magnitude of fCc relative to faa. 

In summary, the velocity coefficients are not very sensitive to changes in the 
parameters defining the salt molecule. One can demonstrate clearly the hierarchy 
of definability of a salt molecule. In equilibrium the definition of a salt molecule is 
entirely arbitrary, the ions themselves may be considered to be the independent 
particles. Of course, this holds as long as no equilibrium properties lead to the 
conclusion that ion pairs should exist. 

VELOCITY CORRELATIONS IN AQUEOUS ELECTROLYTE SOLUTIONS 

+ 0.2 c 

- - 0 6 L  0.7 1 2 3 4 

2s 
FIG. 4.-First approximation to velocity correlation coefficients for aqueous solutions of NaCl (l), 

LiCl(2), CaC12 (3) and BaC12 (4). 

In the presence of an electric current, when the system remains uniform, the same 
statements hold true. 

If there is a non-uniformity in the system, mass fluxes occur in the analytical 
field q(r ,  t )  ( i  = 1,2) represented by the solution. The analytical operation of taking 
a sample always yields the neutral salt, in spite of the fact that the ionic mobilities 
differ. This fundamental result requires the definition of the salt molecule. How- 
ever, the location of the salt molecule is not uniquely specified; in eqn (19) the 
definition of the position vectors yk may involve any &value, provided 6 + 0 as 
c, + 0. We have, arbitrarily, chosen the example 6 = 0 for all concentrations 
(fig. 4). 

The next requirement is that the excess constituent mass fluxes in the presence of 
electrodes ( j ,  = 0) are also represented by the concept of the salt molecule. The 
mass fluxes of the solute towards or from the electrodes are correctly described by 
the first approximation, but the “rotation” of the salt molecule representing the 
excess constituent mass fluxes, eqn (39) and (40), has also to be described correctly. 
In fact, the definition of the molecule does not a priori fix the location of the ions 
belonging to the molecule and we have also to account for the “ salt molecule ” whose 
parts are extending over the entire electrolytic cell from the cathode to the anode. 
At the cathode the anion is formed and at the anode the cation is formed; this 
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molecule then ‘‘ rotates ” about the point y k  as given by eqn (19) with the 6 values 
show in fig. 1 and 2. This is the second aspect of the concept of a salt molecule : the 
coherent effects at the cathode and anode, which have the form uf two diffusion fluxes 
of solute towards and away from the electrodes (which in general are asymmetric at 
the boundaries). Were they symmetric then we would always have t ,  = t ,  = 1 2‘ 

Woolf and Harris have also computed velocity correlation coefficients using the 
approach based on two ionic fluxes in the solvent at rest as developed by Miller, lo 

see also: ref. (11) and (12). Miller’s phenomenological coefficients Z i j  are related to 
the velocity correlation coefficients via phenomenological coefficients in the local 
centre-of-mass fixed coordinate system. Although this treatment in its physical 
essence is different from ours because mass flux and electric current density are con- 
sidered to be directly coupled, the final results for the velocity correlation coefficients 
axe very similar to our data presented in fig. 1 and 2. To give a rough estimate, the 
deviation is of the order of 10 %. Thus even here we see that the velocity cor- 
relation coefficients are fairly insensitive to the path on which they were derived. 
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