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Abstract 
This talk will summarize the present status of an ongoing research program designed to answer 

the question posed in the title. Since a snapshot of liquid water with a subpicosecond shutter 
speed reveals that this system (a hydrogen-bonded liquid) is above its percolation threshold, it is 
tempting to imagine that connectivity concepts of the sort encompassed in percolation theory 
may prove useful. We find that the traditional approach of random-bond percolation theory-  
developed to describe the onset of gelat ion-is  not sufficient, since water is well above its 

gelation threshold. Hence we develop a new correlated-site percolation model, whose predictions 
are found to be in quantitative agreement with molecular dynamics calculations and in qualitative 
agreement with a wide range of experimental data on low-temperature water. 

The picture that emerges is that of an "infinite" hydrogen-bonded network subject to con- 
tinuous restructuring. At any instant of time, there are many strained and broken bonds. Tiny 
patches of this network have a local density and local entropy lower than the global density and 
global entropy of the network. These pa tches-  described by correlated-site percolation theory-  
are all possible sizes and are characterized by highly ramified ("tree-like") shapes, just as in 
random-site percolation. 

In particular, this model explains the paradoxical facts that at sufficiently low temperature, the 
isothermal compressibility KT ~ ((817)2)T~N and the constant-pressure specific heat 
CP o~ ((~S)2)TpN increase as T decreases, while the thermal expansivity ap ~ (SV~S)rPN is 
negative. Finally, we discuss some ongoing calculations and experiments designed to provide 
additional tests of the overall picture. 
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R~sum~ 
Cet expos6 va r6sumer l'6tat actuel d'un programme de recherche en cours se proposant de 

r6soudre la question pos6e dans le titre. Depuis qu'un clich6 d'eau liquide effectu6 ~ l'aide d'un 
obturateur A vitesse ultra-rapide (<picoseconde) a montr6 que ce systeme (liquide avec liaisons 
hydrog~ne) est au-dessus de son seuil de percolation, il est tentant de croire que les concepts de 
connectivit6 de la sorte de ceux rencontr6s en th6orie de la percolation peuvent se r6v61er utiles. 
Nous trouvons que l'approche traditionnelle de la th6orie de la percolation avec liens al6atoires - 
d6velopp6e en vue de d6crire les d6buts de la g61ation - est insuffisante, 6tant donn6 que l'eau est 
bien au-dessus de son seuil de g61ation. Nous d6veloppons alors un nouveau module de 
corr61ation entre les sites dont les pr6dictions s'av6rent 6tre en accord quantitatif avec les caiculs 
de la dynamique mol6culaire et en accord qualitatif avec un large 6chantillon de donn6es 
exp6rimentales recueillies pour l'eau ~ basse temp6rature. 

L'image qui en ressort est celle d'un r6seau "infini" de liaisons hydrog~ne sujet ~ restruc- 
turation continue. A chaque instant, il y a plusieurs liens sous tension ou bris6s. Les petites 
mailles de ce r6seau ont une densit6 locale ainsi qu'une entropie locale inf6rieure ~ la densit6 et 
rentropie globale du r6seau. Ces mailles-d6crites par la th6orie de la percolation avec cor- 
r61ation entre les sites - sont de toutes les grandeurs possibles et sont caract6ris6es par des formes 
hautement ramifi6es (type arbre g6n6alogique) juste comme en percolation avec sites al6atoires. 

En particulier, ce module explique les fairs paradoxaux qu'A temp6rature suffisamment basse, 
la compressibilit6 isothermique KT ~ ((~'~)2)TpN et la chaleur sp6cifique ~ pression constant 
Cp ~ ((~S)2)rpN croissent comme T d6croit, pendant que l'expansivit6 thermique ap ~ (~ '~S))~e~ 
est ndgative. Finalement nous discutons quelques calculs et exp6riences pr6sentement en cours 
d6sign6s fi fournir des tests additionnels ~ l'ensemble. 

W h e n  the Organ iz ing  C o m m i t t e e  a s k e d  if I w o u l d  p r e s e n t  a p r o g r e s s  r e p o r t  

on  some  r e l a t i v e l y  r e c e n t  ongo ing  r e s e a r c h  on  the r e l e v a n c e  of  p e r c o l a t i o n  to 

wa te r ,  I h a p p i l y  a c c e p t e d .  I can  n e v e r  r e s i s t  the  o p p o r t u n i t y  to l ec tu re  on  the  

p o s s i b i l i t y  tha t  a r e l a t i v e l y  a b s t r a c t  and  f o r m a l  t op i c  of  s ta t i s t i ca l  p h y s i c s -  

p e r c o l a t i o n -  m a y  in f ac t  tu rn  out  to have  an  u n e x p e c t e d  a p p l i c a t i o n  to the  

real  wor ld .  I t  is t he se  u n e x p e c t e d  a p p l i c a t i o n s  tha t  s e rve  to j u s t i f y  yea r s  of  

r e s e a r c h  in b a s i c  t heo ry .  

A t  the  beg inn ing ,  it is a p p r o p r i a t e  to s ta te  m y  o w n  degree  of  i n d e b t e d n e s s  

to a n u m b e r  of  ind iv idua l s .  In  a d d i t i o n  to m y  c o l l a b o r a t o r s  w h o  jo in  me  as  

c o - a u t h o r s ,  m a n y  ind iv idua l s  p l a y e d  k e y  ro les  in in f luenc ing  the d i r ec t i on  o f  

this  r e s e a r c h  p r o g r a m .  F i r s t  and  f o r e m o s t ,  C.A.  Ange l l  should  be  t h a n k e d  for  

e x t e n s i v e  i n t e r ac t i ons  at  e v e r y  s tage  of  this  work .  Ins igh t fu l  r e m a r k s  of  R. 

Bans i l ,  L.  Bos io ,  A. Conig l io ,  H.  F r a n k ,  P .G.  de G e n n e s ,  W.  Kle in ,  J. 

L e b l o n d ,  P.  P a p o n ,  S. R e d n e r ,  P.J .  R e y n o l d s ,  and  F .H .  S t i l l inger  have  

s t rong ly  in f luenced  the  d i r ec t i ons  this  p r o g r a m  is taking.  

This  p r o g r a m  had  its genes i s  in large  pa r t  due  to m y  p o o r  c o m m a n d  of  the  

F r e n c h  language .  W h e n  I a r r i v e d  at  the  L a b o r a t o i r e  de  P h y s i q u e  T h e r m i q u e  

to spend  a f ew  m o n t h s  as the  " J o l i o t - C u r i e  Vis i t ing  P r o f e s s o r "  I f o u n d  tha t  

the  F r e n c h  I had  s tud ied  f rom l anguage  t a p e s  bo re  l i t t le  r e s e m b l a n c e  to tha t  

h e a r d  in the  l a b o r a t o r y .  E i t h e r  I had  to l ea rn  F r e n c h  ove rn igh t ,  or  s p e a k  

Engl i sh .  The  d e c i s i o n  was  m a d e  eas i ly :  Jos6 T e i x e i r a  s p o k e  p e r f e c t  Engl ish .  

H e  was  in the  p r o c e s s  of  m a k i n g  m e a s u r e m e n t s  on  s u p e r c o o l e d  wa te r ,  a 
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subject  I knew nothing aboutt). His data2), as well as data f rom a var iety of 

other laboratories,  pointed to the fact  that a lmost  every  proper ty  of liquid 
H20 and D20 has paradoxical  behavior.  Some propert ies  are anomalous  at 
relatively high temperatures3), while others become  anomalous  only at low 
temperatureS). All the anomalies are greatly accentuated as one lowers the 
tempera ture  into the supercooled region. 

What  are these anomalies? Simply put, the fluctuations are (i) much larger 
than one would anticipate and (ii) depend upon tempera ture  T, pressure P, 
and mole fract ion x of impurity in a fashion that runs counter  to our intuition. 
For  example,  three commonly-s tudied static correlation functions are the 

following: 
(a) Density fluctuations. One might expect  that the isothermal com- 

pressibility KT could not decrease with T, since Kr is proport ional  to the 
densi ty-densi ty  correlation function, and density fluctuations should not 
decrease as T increases.  Although K r  does indeed increase with T at high 
temperature ,  it decreases  with T for  T < 46°C (fig. 1). 
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Fig. 1. Schematic dependence on temperature of (a) the isothermal compressibility K-r(T, Po, xo), 
(b) the constant-pressure specific heat Cp(T, Po, xo), the thermal expansivity ap(T, Po, xo) for 
either H20 or D20. For all functions, the pressure Po is atmospheric, and the impurity concen- 
tration xo is zero. The behavior of a typical liquid is indicated by the dashed line, which very 
roughly is an extrapolation of the high-temperature behavior of liquid water. Note that the 
anomalies displayed by liquid water become more striking as one supercools below the melting 
temperature Tm2~). 
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(b) Entropy fluctuations. One might expect that the constant pressure 
specific heat Cp could not decrease with T, since Cp is proportional to the 
entropy-entropy (or enthalpy-enthalpy) correlation function, and entropy 
(enthalpy) fluctuations should not decrease as T increases. In fact, Cp also 
decreases with T for T < -  10°C. 

(c) "Cross-fluctuations" of entropy and specific volume. One might expect 
that the thermal expansivity ap could not be negative, since ap is proportional 
to the cross-fluctuations of entropy and specific volume. When there is a 
density fluctuation to lower density and hence larger specific volume, we 
would expect that the entropy would increase, so that ap > 0. In fact, one 
finds that ap < 0 for T < 4°C ( n 2 0 )  and for T < 11°C(D20). 

The dynamic properties are also anomalous. For example, if we examine 
the dependence upon lIT of the logarithm of characteristic times such as "rD 
(dielectric relaxation time), D ;  1 (Ds = coefficient of self-diffusion), or rl/T 
(4 = shear viscosity), we find that these are roughly linear at high T, but 
increase much faster than linearly at low T. Pressure increases the viscosity 
at high temperatures (as for other liquids), but has the opposite effect for 
T < 20°C. 

Most liquids undergo a glass transition when supercooled sufficiently 
rapidly. No glass transition has ever been observed in liquid water, even at 
remarkably high quenching rates. 

The list of strange properties could occupy this entire talk. Moreover, all 
the anomalies seem to be greatly accentuated on reducing T below Tin, the 
normal melting temperature. The important point is that despite tremendous 
accomplishments of recent years in obtaining experimental information on the 
detailed properties of wa te r -  even down to the lowest attainable temperatures 
(roughly - 3 8 ° C ) - n o  physical picture has emerged that even qualitatively 
encompasses all the experimental facts. What is the physical mechanism (or 
mechanisms) underlying these unusual phenomena? 

The first place to look for a physical mechanism is the microscopic 
properties. The principal difference, microscopically, between water and most 
other liquids is that water has an intermolecular potential that is believed to 
strongly favor a highly directional (tetrahedral) network of hydrogen bonds. 
However the properties of these bonds- the i r  relative fraction 4) PB and their 
lifetime 5) ~Hs- vary smoothly with temperature (fig. 2). 

We conclude therefore that the "puzzle of liquid water" will require some 
sort of mechanism (i) whereby the hydrogen bonds among the four-functional 
monomers play a dominant role, and (ii) which can amplify the smoothly 
varying bond properties PB and ~'HS- When one considers bonding among 
four-functional monomers, one immediately thinks of Flory's theory of 
gelation6)-which is essentially equivalent to random bond percolation7). 
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Fig. 2. Schematic dependence on temperature of the two microscopic parameters emphasized in 
the present percolation approach. (a) the fraction of intact hydrogen bonds, pB(T, Po, xo), and (b) 
the characteristic hydrogen-bond lifetime ~'HB(T, Po, X0). The fact that these functions do not 
display any striking "non-linear" behavior motivates the need for an amplification mechanism-  
such as that provided by eq. (1 ) - to  explain the highly non-linear behavior of functions such as 
those plotted in fig. 1. 

However there are at least two problems with the possibility 8) that the 
unusual properties of liquid water are associated with its "gelation threshold" 
(or bond percolation threshold): 

(i) There is ample evidence that the fraction of intact hydrogen bonds, PB, 
is well in excess of the bond percolation threshold even at relatively high 
temperaturesg), and 

(ii) The observed anomalies in thermodynamic functions, such as the 
unusual density and entropy fluctuations mentioned above, are not associated 
with the gelation (or random-bond percolation) threshold, with which are 
associated increased connectivity fluctuations. 

It is thus necessary to go beyond conventional models of percolation if one 
is to find a physical mechanism germane to the unusual behavior displayed by 
the hydrogen-bonded "gel", liquid water. The first model I thought of l°) is 
extremely simple, yet potentially useful in providing a "zeroth order" des- 
cription of the essential physical mechanism underlying water behavior. I will 
first describe this model1°), and then discuss some recent tests using molecular 
dynamics data on ST2 water u) and experimental data on real waterm). Finally, 
I will mention some improvements on the simple model that may be ap- 
propriate. 

Fig. 3 shows a small section of the infinite hydrogen-bonded network for 
PB = 0.8 (a very rough estimate 4'9) for low-temperature water). Each vertex 
represents an oxygen, and each line segment an intact hydrogen bond. Of 
course, the oxygens in real water are not situated on the vertices of a lattice, 
but the essential features of percolation theory appear to be generalizable 
from lattice systems to continuum systems~U2). Every "oxygen" with four 
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intact bonds incident upon it is indicated by a heavy black dot. The study of 
the connectivity of these "black oxygens" constitutes a novel sort of cor- 
related-site percolation problem ("correlated"-e.g. ,  it is impossible that the 
four neighbors of an oxygen are all black unless the oxygen itself is black). 

In what follows we shall summarize the evidence that (i) this simple picture 
is supported by quantitative calculations- without adjustable parameters-  on 
ST2 water") and that (ii) this picture provides a qualitative interpretation of 
essentially all of the experimental anomalies of low-temperature water of 
which we are aware'°). 

Calculations on ST2 water. In many computer calculations on the proper- 
ties of water-like particles, one defines two water molecules as "bonded" 
when their mutual interaction energy V(r) is less than a cutoff parameter VHR 
(fig. 4). Thus a typical molecular dynamics calculation results in a picture like 
that shown schematically in fig. 5. The bonds are shown in perspective for 
the 18.6,~x 18.6,~x 18.6A constant-volume cube within which reside 216 
water-like particles whose motion is studied. Note that there are "networks" 
of every shape and size. Percolation theory gives the weight fraction 
W(M, pa) of networks with M molecules. The comparisons between molecu- 
lar dynamics and percolation theory are shown in fig. 6 for the case M = 5. 

For the sake of computational facility, we have made two assumptions in 
carrying out the percolation calculations: (i) The water molecules on average 
have the connectivity of an ice Ih lattice, and (ii) the hydrogen bonds are 
randomly distributed- the presence of three bonds incident upon a given 
oxygen does not make a fourth any more likely. The x-axis, the bond 
probability PB, is obtained by calculating for each choice of VHB the mean 
number of intact hydrogen bonds per molecule nHB, and then setting pB = 
nr~B/4. Thus there are no "adjustable parameters" in fig. 6, so the agreement is 
indeed rather remarkable, especially in light of assumptions (i) and (ii). 

Next we direct our attention to the water molecules themselves. Extensive 
molecular dynamics and Monte Carlo information exists on fj, the fraction of 
water molecules with j intact bonds (note that nHB = Yjjfj). Assumptions (i) 
and (ii) suggest that one might usefully compare with the binomial dis- 
tribution: 

f j  = (4)p~(1 - pB) 4-j. (1) 

The predictions of eq. (1) are shown in fig. 7, together with results based on 
analysis of the Rahman-Stillinger molecular dynamics tapes. Note that eq. 
(1) reduces for j = 4  to fa=pg, SO that there is a built-in amplification 
mechanism for the weight fraction of four-bonded atoms. 

The agreement shown in fig. 7 is not limited to molecular dynamics 
calculations using the ST2 potential: 
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Fig. 3. A subsystem consisting of 100 oxygen atoms, situated (for convenience only) on the 
vertices of a square lattice. Of course, the detailed connectivity of this square lattice is different 
from the connectivity in water or ice (cf. figs. 6-8). Intact hydrogen bonds-randomly present 
with probability pa(T, P, x) = 0.8 - are indicated by solid line segments. Oxygens with four intact 
bonds are shown as heavy black dots. The "black oxygens" form patches in the hydrogen-bonded 
network. The site percolation problem defined by the connectivity of these black oxygens is a 
correlated one: if a given oxygen A is black, there is a greater probability that the neighbors of A 
are also black. 
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Fig. 4. Schematic illustration of a water-water interparticle potential V(r). The fact that the 
water molecule is highly asymmetric implies that this curve depends not only on the molecule- 
molecule separation vector r, but also on the relative orientation of the two waters. Also shown is 
the concept of a cutoff parameter VHB, as used extensively in molecular dynamics calculations. 
When the mutual energy of interaction is stronger than V,a, we say that the two molecules have 
a bond between them; otherwise no bond is said to exist. This imposition of a discrete symmetry 
upon a continuous physical function can be avoided by the extension of our present model to a 
"continuum, polychromatic" case24). 
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Fig. 5. The results of an instantaneous "snapshot" of a Rahman-Stillinger molecular dynamics 
simulation of 216 ST2 water-like point particles constrained to a 18.6 ,~ cube. In (a) are shown 
only those "intact bonds", as defined by the convention of fig. 4, with VHB =--56~, and 

= 0.07575 kcal/mole. This value of a cutoff parameter corresponds to nHB = 1.92 and pa = 0.48 
(above the bond percolation threshold). In (b) are shown as large open circles those "black 
oxygens" with four intact hydrogen bonds. The detailed statistics of bond connectivity can be 
obtained by varying VHs in order to vary pB; these are exemplified by the results of fig. 6. The 
details of the connectivity of the patches of four-bonded oxygens are exemplified by the results 
of fig. 8. Adapted from ref. I 1. 
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Fig. 6. Dependence upon pa of the weight fraction of oxygens belonging to finite-size networks 
containing M molecules, for M = 5. Incidentally, the case M = 1 is identical to f0, plotted in fig. 7. 
The points represent the bond connectivity analysis of the Rahman-Stillinger molecular dynamics 
tapes for ST2 water, while the solid curves represent the results of random-bond percolation 
calculations for an ice Ih lattice. Adapted from ref. 11. 

(i) Jorgensen 13) has calculated the hydrogen-bonding statistics for STO-3G 
water using Monte Carlo methods, with the results 100fj = 0, 2, 11, 36, 50, 2 
for j =0 ,  1,2,3,4,5.  Eq. (1) predicts 100fj =0 ,2 ,  11,38,50 for j =0 -4  using 
PB = 0.84 (n.B = 3.36). 
(ii) Pengali et al. 14) have calculated fj for several different system sizes, and 
we find full agreement between their Monte Carlo calculations and eq. (1). 
(iii) Mezei and Beveridge 15) have analyzed the network properties for a 
variety of separate Monte Carlo and molecular dynamics calculations on both 
ST2 and MCY potentials. Altogether four different values of temperature are 
considered. For all cases, they find network properties depend only on nna, 
and not on the interparticle potential, the temperature, or the definition of a 
hydrogen bond ("energetic criterion" or "geometric criterion"). Their analysis 
thereby supports a principal assumption of our work that pB = nHa/4 is the 
primary determinant of network properties: all their data collapse upon the 
same curve if plotted against pa (cf. fig. 10 of ref. 15). 

Although the fraction of molecules fj belonging to each class is determined 
by simple statistics, the connectivity of each of the five species of molecules 
is far from trivial. In fact, the positions of the four-bonded "black oxygens" 
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Fig. 7. Dependence upon pB of the fraction of oxygen atoms having j intact bonds, for j = 1-4. 
The points represent the results f rom the Rahman-Sti l l inger tapes for ST2 water, while the solid 
curves represent the results of eq. (1). Adapted from ref. 11. 

are strongly correlated, just as if there were an energy term leading to a 
tendency to clump together~6). At first sight this is a subtle and extremely 
surprising point: " random bonds lead to correlated sites." This "clumping" is 
most clearly seen if we calculate the weight fraction W(s, pB) for s-site 
patches of four-bonded oxygens. This calculation can be done exactly for s 
up to 5, and it can be done with about 1% accuracy by Monte Carlo methods 
for s up to about  15 or 20. The remarkable agreement between W(s, pB) and 
the results of molecular dynamics calculations on ST2 water is illustrated for 
s = 5 in fig. 8. Thus there is ample reason to believe that we may regard 

water as an infinite hydrogen-bonded network,  tiny patches of which are 
four-bonded.  

The functions W(s, pB) have also been calculated for the much simpler case 
of random site connectivityZT), and the results are shown in fig. 9. We find that 
the ratio of " r andom"  to "cor re la ted"  weight function increases as pa 
increases. Since PB increases when T decreases,  we have a "clumping effect"  
which increases as T decreases,  just as might have been expected were there 
present  an explicit "energy  term."  For  example, if pH = 0.8, then we find the 
ratio of " r andom"  to "cor re la ted"  WR(1,O.8)[W(1, O.8)----2.1 f o r  1-site pat- 
ches, and WR(2,0.8)/W(2,0.8)=2.5 for  2-site patches. This is intuitively 



270 H.E. STANLEY ET AL. 

I I I 
1 . 2 0  

1.05 

0.90 

0.75 

0 . 6 0  

0 . 4 5  

0.30 

0 . 1 5  _ 

0 .00  : J - 
0.2 0.3 - 

i I 

to 
i! 

v 

I 
0.4 0.5 O.8 

I 
0.7 

PB 

! I 

m 

e ° 

0 . 8  - 0 . 9  - 1 . 0  

Fig. 8. Dependence upon pB of the weight fraction of oxygens belonging to finite-size "patches" 
of s molecules, characterized by the fact that every oxygen in a patch is bonded to precisely four 
other oxygens. Shown is the representative case, s = 5. The points represent the molecular 
dynamics results for ST2 water, and the solid curve represents exact calculations for the ice Ih 
lattice. Adapted from ref. 11. 

plausible, since small patches occur much less frequently due to their ten- 
dency to "clump together" in larger patches (fig. 9). 

To summarize thus far: When looking at the bond connectivity problem, 
water appears as a large macroscopic space-filling hydrogen-bond network, as 
expected from continuum models of waterS). However when we focus on the 
four-bonded molecule ("sites"), we find that water can be regarded as having 
certain clustering features-  the clusters being not isolated "icebergs" in a sea 
of dissociated liquid (as postulated in mixture models dating back to Roent- 
gen18)) but rather patches of four-bonded molecules embedded in a highly 
connected network or "gel". 

At this stage, one can ask "So what?" That is, "What is the relation 
between the patches in the infinite bond network and the observed anomalies 
of liquid water?" 

The answer to this question must be "Nothing whatsoever!" unless there is 
some local property of the patch that is different from the global properties 
of the hydrogen-bonded network as a whole. It is our Ansatz that (i) the local 
density and (ii) the local entropy of the patch are less than the global density 
and the global entropy of the network. If this intuitively-plausible assumption 
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Fig. 9. Histograms showing the dependence upon s of the weight fraction of oxygen atoms 
belonging to a patch of size s. Note that this distribution is monotonically decreasing, so that 
there are always more 1-site patches than 2-site patches, etc. The triangles are correlated-site 
percolation calculations on an ice Ih lattice with 35,152 sites. Shown for comparison are the 
results of random-site percolation theory (ref. 17). 

is correct, it would provide a mechanism for the observed anomalies in static 
properties. 

(i) Local density associated with a patch. The assumption that the local 
density in a patch should be smaller than the global or mean density of the 
network has recently received support from the molecular dynamics analysis 
of ST2 water11), and it is certainly intuitively plausible that if all molecules in 
a given patch are tetrahedrally bonded, the local density should be different 
than in a region of space in which this is not true. 

(ii) Local entropy associated with a patch. The assumption that the local 
entropy in a patch should be smaller than the mean entropy of the network 
requires more explanation. The water molecule is extremely non-spherical, 
and hence its tendency to form hydrogen bonds is highly directional. Thus the 
angular degrees of freedom are greatly reduced (i.e., the angular range is 
much smaller) in a patch where all molecules are four-bonded. 

Assumption (i) implies that the existence of tiny patches gives rise to an 
additional contribution to the fluctuations ~ V =  ~'r--(~'r)TPN in the specific 
volume, where ( ' ' ' )TpN is an ensemble average with temperature, pressure, 
and particle number fixed. Hence there is an "anomalous" contribution K A to 
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the compressibility, since 

Kr -= - (1/XT)(0XT/OP)r ~ ((3xT)2)rpN. (2a) 

Indeed, it is known that the density fluctuations of liquid water are roughly 
twice as large as those of a typical liquid~9). 

As the temperature is lowered, K A would be predicted to increase initially, 
since the patches become more numerous as PB increases (cf. fig. 8). This 
behavior is in contrast to that of most liquids, as mentioned at the beginning 
of this talk. Of course, if we could lower the temperature sufficiently, we 
would expect K A to become smaller, so that the overall compressibility might 
again decrease. There are recent indications that this might be the case for the 
adiabatic compressibility Ks2°). 

Assumption (ii) implies that analogous statements may be made concerning 
the fluctuations 3S = - S -  (S)rPN in the entropy, and hence we anticipate an 
anomalous contribution C A to the constant-pressure specific heat, 

Cp =- (1/T)( OS/ 3T)p = k (( 3S)2)TpN. (2b) 

Thus we correctly predict that Cp for water should be larger than Cp for most 
liquids, and should increase at sufficiently low T. 

One might imagine that whereas the density of a very small patch (e.g., 2-3 
molecules) might be significantly reduced from the global density, one would 
require rather larger patches in order to obtain a significant entropy reduction. 
If this intuitive hunch is correct, it would explain why K~ begins to display 
anomalous behavior at much higher temperatures than Cp~). 

Incidentally, one may replace the above discussion concerning entropy 
fluctuations by an analogous discussion concerning fluctuations in the 
enthalpy H, since Cp is also given by Cp = kTE((3H)E)rpN. 

Finally, we consider the thermal expansivity, which is proportional to the 
cross-fluctuations of volume and entropy: 

ap - (l /(r)(a( ' lOT)p ~ (3(r3S)~pN. (2c) 

For most liquids, when there is a local volume fluctuation with a positive 3~7, 
there is a corresponding increase in the local entropy (38 > 0). However for 
the patches in question, 3S < 0 when 3V > 0, so that there is an anomalous 
negative contribution a A to the thermal expansivity. The normal and 
anomalous contributions balance at T = 4°C. 

Thus the effect of the hydrogen bonds is predicted to "correct" the basic 
response functions K~, Cp, and ap in the fashion summarized in the first line 
of table I. As the temperature is lowered, pB increases, and these corrections 
would be expected to change in magnitude, in the directions indicated by the 
arrows given in the second line of table I. If hydrostatic pressure is applied to 
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the system, the patches decrease in size and n u m b e r - o n  average-  and we 
"predict the changes summarized on the third line. However if we dilute H20 
with a mole fraction x of the "impurity" D20, then we expect that the patches 
increase in characteristic size and number -wi th  the predictions summarized 
on the fourth line. If instead we dilute H:O with "patch-breaking" impurity-  
such as ethanol, which can form essentially 3 bonds per molecule rather than 

4 -  we make the predictions given on the bottom line of table I21). 
All 15 qualitative predictions summarized in table I are borne out by 

experimentL3). A more quantitative discussion of the predictions, together 
with detailed references to the experimental results, is provided in ref. 10. 

Summary and outlook. In a talk of finite length, it has been impossible to 
discuss all the experimental facts and the extent to which percolation theory 
may be relevant. Hence I have concentrated on (i) the evidence from 
molecular dynamics for the existence of patches whose statistics are des- 
cribed quantitatively by correlated-site percolation theory, and on (ii) the 
qualitative implications of the existence of such patches for the three res- 
ponse functions just discussed. Other functions can be approached in the 
same spirit. For example, we (correctly) predict that the constant-volume 
specific heat Cv has no anomalies, since an essential feature of the tiny 
patches of four-bonded oxygens is that their local density is slightly smaller 

TABLE I 

Summary of the qualitative predictions of the 
simple bichromatic discrete percolation model for 
the behavior of three static response functions: the 
isothermal compressibility Kr defined in eq. (2a), 
the constant-pressure specific heat Ce defined in eq. 
(2b), and the thermal expansivity ap defined in eq. 

(2c). 

KT Cp ap 

Sign of anomaly + + - 

Lower T 1" 1" 

Increase P $ $ 1' 

Dilute with D20 i' 1' 

Dilute with a ~ ~ I' 
"patch-breaking" 
impurity 
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than the global density. Also, we (correctly) predict that there will be no glass 
transition in liquid water, since the tiny low-entropy patches of the random 
hydrogen-bonded network create an irreversible situation tending toward 
crystallization. However relatively few molecules of a "patch-breaking" im- 
purity should restore the transition, and this is indeed found to be the case22). 
We further predict that less impurity will be required when measurements are 
made under pressure, and this prediction is also borne out23). By the way, 
various pictures of liquid water that resemble glassy water would seem to 
have difficulty in explaining the absence of a glass transitionS). 

It is clear that the present picture is based on an assumption: the existence 
of tiny patches of the hydrogen-bonded network. While this assumption has 
been strikingly verified by molecular dynamics calculations"), what is most 
urgently needed is a direct experimental confirmation in real water. One 
possible experiment would be measurements of the X-ray structure factor 
S(q) at very small momentum transfer vectors q and at very low tem- 
peratures T. One would predict that the very small reduction in electron 
density associated with a patch would provide sufficient contrast to be 
detectable24). Previous measurements of S(q) did not attain extremely low q 
or extremely low T, but did suggest a slight increase25'26). Further work is 
planned using synchrotron radiation to provide high X-ray flux26). We are 
especially optimistic, since preliminary molecular dynamics analysis H) sug- 
gests a non-negligible effect. 

Theoretical elaborations are also called for, if the present heuristic picture 
is to become sufficiently developed to provide a fully quantitative description 
of low-temperature water. Among the most important is the creation of an 
appropriate Hamiltonian that describes simultaneously (i) the interactions and 
(ii) the connectivity between water molecules27). Approaches analogous to 
that used for describing solvent effects on gelation 2s) are under study at the 
present time. Also important is a study of how serious an approximation is 
made by the imposition of a discrete symmetry- the  assumption of two bond 
states (fig. 4 ) -upon  a physical function, V(r), that is certainly not discrete. 
Here one can hope that the essential physical features of the present "dis- 
crete" picture are not altered, just as the discrete lattice-gas adequately 
describes the essential physics of a fluid near its critical point. However a 
more refined "polychromatic continuum percolation" is a natural and quite 
feasible extension24). 

Thus much remains to be done, both experimentally and theoretically. 
However we are optimistic that the simplicity and elegance of the present 
picture will not be lost by the sort of elaborations that will perforce arise. In 
particular, it is our hope - as physicists - that whatever the solution may be to 
the "puzzle of liquid water", it is sufficiently economical that only a single 
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physical mechanism remains to be discovered to encompass the entire range 
of phenomena-ranging from the compressibility minimum at +46°C to the 
Angell singularity ~) at about -46°C. It would be most unsatisfactory if we 
would require one mechanism for, say, T >Tm and a second mechanism for 
T < Tm. 

What, then, does the future hold? The most optimistic possibility is that we 
can answer "yes"  to the question posed by the title, and our program may 
possibly lead to a useful foundation on which to further understanding of 
liquid water. At the least optimistic, percolation concepts will prove to be 
irrelevant to the behavior of liquid water, but nevertheless we will have 
learned a great deal about a simple model in which sites become correlated as 
a result of a random process. Even the least optimistic possibility is not 
without some satisfaction, however, since any well-understood model is likely 
to have some application in the complex physical world. This seems to be the 
case here, also: Brodsky of IBM Research Laboratories has recently suc- 
ceeded in applying the model to hydrogenated amorphous silicon, aSiHx29), a 
prototype material for energy conversion. Specifically, he proposes that pure 
Si corresponds to our model with pB = 1. Hydrogenation corresponds to 
breaking covalent Si-Si bonds, and therefore corresponds to increasing tem- 
perature, pressure, or patch-breaking impurity concentration. By doing cal- 
culations on the system of "disconnected Si patches," Brodsky succeeds in 
predicting the results of several hitherto inexplicable experiments. Who 
knows-g iven  the energy crisis facing every country represented at this 
meet ing- i f  the "least optimistic" possibility is not sufficient justification for 
continuing our research program in polychromatic correlated-site percolation? 
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