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We report on a molecular dynamics (MD) study of the connectivity of hydrogen bond networks in 
liquid water, focusing primarily on the microscopic distribution functions giving the weight 
fraction of molecules belonging to a "net" of M molecules (M = 1,2,3, ... ). The MD data compare 
favorably-using no adjustable parameters-with predictions of random bond percolation 
theory. We also study the connectivity of those molecules with four intact hydrogen bonds, and 
compare the corresponding distribution functions with correlated-site percolation theory. Our 
analysis supports the proposal that when looking at the bond connectivity, water appears as a 
macroscopic space-filling network-as expected from continuum models of water. When looking 
at the correlated site percolation problem defined by the four-bonded molecules, water appears as 
a myriad of tiny ramified low-density patches, somewhat reminiscent of mixture theories and 
cluster models. In Appendix A, we find a strong correlation between the number of molecules 
within a sphere of radius rc around a given molecule and the total interaction energy ofthat 
molecule with its neighbors residing in that sphere; for most choices of rc , the energy becomes less 
negative when more molecules are in the sphere, in contrast to the behavior of a normal fluid. This 
result supports the finding of Geiger and Stanley that regions of high bond connectivity are 
correlated with regions of low density. In Appendix B we describe in detail how we adapt 
conventional percolation theory to the calculation of cluster size distribution functions for 
hydrogen bond networks in water. 

I. INTRODUCTION 

It has long been recognized that the extensive degree of 
hydrogen bonding in liquid water is related to many of the 
unusual properties of this substance. 1.2 However, a remarka­
bly small fraction of the immense literature on water deals 
with questions of connectivity-perhaps because there is no 
experimental probe that directly measures the hydrogen 
bond distribution.3 Computer simulation methods, such as 
molecular dynamics (MD), offer the opportunity to study 
connectivity in great detail. For example, Geiger et al.4 ana­
lyzed the classic MD simulations of Rahman and Stil­
linge.-5,6 from the point of view of connectivity, and found 
that water is well above its percolation threshold for any 
reasonable definition of a hydrogen bond. 

In this work, we shall extend the work of Ref. 4 by 
focusing not on questions relating to the percolation thresh­
old, but rather on a family of distribution functions W M that 
give the weight fraction of water molecules belonging to fin­
ite "nets" of M molecules. These distributions are sufficient 
to calculate many desired connectivity properties, and thus 
contain the most general information concerning the hydro­
gen bond network in liquid water. We shall compare the MD 
results with calculations based on the concepts and tech­
niques of random-bond percolation theory.7 

We also consider the connectivity properties of those 
molecules with four intact bonds. These properties are inter­
esting because a recently proposed structural model regards 

water to be a transient hydrogen-bonded "gel," local patches 
of which exhibit a high degree ofbondedness. 8 Evidence9

•
lo 

suggests that the local density of such patches is less than the 
global density, thereby explaining some of the unusual be­
havior of water. We calculate the distribution functions giv­
ing the weight fraction of water molecules belonging to s­
molecule patches of four-bonded molecules, and compare 
the MD findings with calculations based on correlated-site 
percolation theory. 

This work is organized as follows. In Sec. II, we de­
scribe the MD simulation approach, and the relation 
between the definition of a hydrogen bond and the mean 
number nHB of hydrogen bonds per molecule. In Sec. III we 
present MD results for jj, the fraction of water molecules 
with j intact bonds, and we show the degree to which the 
MD results are described by a binomial distribution. In Sec. 
IV, we present MD data for the microscopic distribution 
functions for M-molecule nets, and compare with the predic­
tions of percolation theory. In Sec. V we perform the analo­
gous calculations for the distribution functions for the frac­
tion of molecules belonging to as-molecule patch. In Sec. VI 
we use the microscopic distribution functions to calculate a 
macroscopic function, the "weight-average" size of the net­
works. Section VII summarizes the main conclusions of this 
study. Appendix A presents evidence that regions of high 
bond connectivity are associated with regions oflow density. 
Finally, Appendix B describes the details ofthe percolation 
theory calculations. 
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II. MD SIMULATION AND HYDROGEN BOND 
DEFINITIONS 

The MD system consists of 216 water molecules, inter­
acting via a ST2 pairwise potential, confined to a cubic box 
with periodic boundary conditions and edge length of 18.6 
A. The system density is 1.0 glcm3 and the temperature 284 
K. Several hundred equally spaced configurations with 
..::1t = 8.5 X 10- 15 s of the Stillinger-Rahman simulation 
run6 were analyzed. 

Because the nature and strength of the interaction 
among the molecules vary continuously with mutual separa­
tion and orientation, any definition that distinguishes unam­
biguously between broken and intact hydrogen bonds im­
plies drastic simplifications. One possible approach, the 
energy criterion, was introduced by Rahman and Stil­
linger. 5.6 Two molecules i andj are considered to be bonded if 
their interaction energy V;j is stronger (more negative) than 
some chosen cutoff energy V HB • 

For only weakly negative VHB , this purely energetic de­
finition of a bond will also include interactions that are not 
compatible with accepted conceptions of hydrogen bonds 
(for example, attractive electrostatic interactions between 
next-nearest neighbors will also be included). To remedy this 
defect, we introduced additional restrictions that lead finally 
to two different definitions of a hydrogen bond; 

DI (energetic definition/number limit); If more than 
four bonds per molecule meet the energy criterion, only the 
four strongest bonds are regarded as intact. 

D2 (hybrid energetic/geometric definition); If any bond 
~eeting the energet!c criterion has oxygen-oxygen separa­
tIOn larger than 3.5 A, it is regarded as broken. This cutoff is 
roughly the distance of the first minimum in the oxygen­
oxygen pair correlation function and is close to the value of 
3.4 A, which has been claimed from x-ray and neutron dif­
fraction studies as a limiting distance for hydrogen bonds. II 

For weakly negative values of VHB we find some molecules 
with more than four intact bonds. 

Ideally, we would like to choose one reasonable value 
for V HB and then change the temperature of the MD simula­
tion to vary nHB • Unfortunately, it is very time consuming to 
carry out several simulation runs at different temperatures. 
By holding the temperature constant and varying V HB' we 
can approximate the behavior of nHB for conditions of con­
st~t VHB and varying temperature. The most negative 
chOIce of V HB corresponds to high temperature because it 
allows few intact bonds; the least negative choice of V HB 

corresponds to low temperature because it allows many in­
tact bonds. Since the choice of VHB is arbitrary, we can vary 
VHB gradually to obtain a systematic "scan" of the contin­
uous range of bond energies. 

We vary the parameter VHB over a sequence of 32 dis­
crete values VHB = - 82E, - 80E, - 78E, ... , - 20E, where 
~ = 0.07575 kcallmol. As VHB becomes less negative we say 
It becomes more permissive, because the mean number of 
hydrogen bonds per molecules nHB increases. This variation 
is shown in Fig. 1 for both bond definitions. The curves are 
roughly the same for both DI and D 2, except for very permis­
sive choices of VHB , where D21eads to larger values of n 
bee 

. ~ 
ause It allows more than four bonds. 

Our results are rather general in the sense that they are 
not very sensitive to the details of the choice of the hydrogen 
bond definition. Indeed, it appears that connectivity proper­
ties are comparable (i) for energetic and geometric defini­
tions, (ii) for different simulation methods (MD or Monte 
Carlo), and (iii) for different molecular interaction models 
(e.g., ST2 or MCY). 12-16 For example, some ofthe results of 
this work for the distribution functions WI - W4 have been 
confirmed using a completely different simulation method; a 
Monte Carlo study with a MCY potential using a geometric 
definition of a hydrogen bond. 17 

III. FRACTION OF MOLECULES WITH/INTACT 
BONDS 

First we direct our attention to the water molecules 
themselves, and in Sees. IV-VI below we consider their 
network properties. We begin by calculating./j, the fraction 
of water molecules with j intact bonds, which is related to 
the total number of bonds per molecule by 

nHB = 'i)./j. (1) 
j;;.l 

For purposes of making graphs, we shall henceforth use nHB 

as the independent variable, or the number p = nHB/z, 

which can be interpreted roughly as the fraction of intact 
bonds (here z is the functionality of a water monomer). In 
this fashion, we omit the auxiliary variable V HB' since n HB is 
the more essential parameter for the description of bond net­
works, allowing a coincident description of systems in very 
different states.4 Figure 2(a) shows the./j as a function of 
nHB = zp for both definitions of a hydrogen bond. The solid 
curves are the simple binomial distribution 

(2) 

3 

2 

o 

FIG. 1. Dependence of nHB , the average number of hydrogen bonds per 
water molecule, on the cutoff energy VHB for bond definitions D.( + ) and 
1?2(?) (£ = 0.075 75 kcallmol). The two definitions produce remarkably 
sundar results, different only in the range of very permissive V HB' where we 
find many five-bonded molecules using definition D and none using D 
(which allows a maximum off our bonds per molecul:). • 
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where z = 4 in Fig. 2{a) and z = 5 in Fig. 2(b). Remarkably 
the MD points agree with the z = 4 curve over a very large 
range of p. There are strong deviations only for values of p 
larger than about 0.8, corresponding to very permissive defi­
nitions ofa hydrogen bond. In this region, we find a substan­
tial fraction of molecules with five intact bonds when using 
definition D 2• Nonetheless, the data agree better with the 
z = 4 curves than with the z = 5 curves. 

The agreement between the MD data and the binomial 
formula shows that the approximation of statistically inde­
pendent bond formation is a sound first order approach, at 
least in describing "ST2 water" which assumes a pairwise 
additive potential function, excluding many-body forces. 
We shall see in Sec. V that there is some evidence for a weak 
cooperative effect in the distribution functions for the 
patches of four-bonded molecules. 

IV. THE BOND NETWORK DISTRIBUTION 
FUNCTIONS W M(P) 

The hydrogen bond network analysis of the MD config­
urations was made along the lines described in Ref. 4 (where 
a purely energetic bond definition was used exclusively). For 

FIG. 2. (a) Fractionj; of water molecules having exactly j intact hydrogen 

bonds Ii = 0.1 •...• 5) calculated using bond definitions D.( + ) and D2(0). 
The full lines correspond to the binomial distribution [Eq. (2)J with 
P = nHB /4 and z = 4. (bl Thej; for definition D2 compared with the binomi­
al distribution for z = 5. 

a fixed value of V HB which corresponds to a fixed value of 
p = nHB /4, we calculate the average number nM(p) of nets of 
M molecules. Hence the weight fraction of molecules be­
longing to such "M nets" is simply 

(3) 

since there are 216 molecules in the system. Note that 
W M( p) is the probability that a randomly chosen molecule 
will be connected by a path of hydrogen bonds to M - 1 
other molecules. 

The actual calculation of nM(p) was described in Ap­
pendix A of Ref. 4. Now, however, we omit all nets that span 
the basic 18.6 A cube in at least one coordinate direction as 
these are indistinguishable from infinite nets. In our system, 
this procedure has no effect for M < 20, but we shall see that 
it leads to a sharply peaked maximum in functions such as 
the average molecular weight (cf. Sec. VI below). 

In any analysis using percolation theory, it is essential 
to first eliminate all connected nets that span the finite di­
mension of the sample, since percolation theory concerns 
only finite clusters. To identify spanning nets, the following 
procedure has been used. First, we identify all the pairs of 
water molecules that belong to the net in consideration and 
that are connected in the periodic arrangement across a face 
of the basic cube. Second, starting from one pair member, we 
search for the other pair member by following all paths along 
bonds that do not cross the separating face. Ifwe can connect 
any such pair in the net by this method, it is said to span. 

In total, 127 MD configurations were analyzed for 
bond definition D) and 800 configurations for bond defini­
tion D2• Hence we expect the results for D2 to show less 
statistical fluctuation. We obtained 50 graphs of W M(P) 
against P using both D) and D2• Figure 3 shows examples of 
these plots for the cases M = 2, 3, 5, and 12; note that the 
special case M = I corresponds to isolated monomers so 
that WI ( p) is the same function as fo plotted in Fig. 2. Also 
shown in Fig. 3 are the results of analytic random bond per­
colation calculations. These were carried out for the ice lat­
tice, since this lattice perhaps best captures the essential fea­
tures of the local environment of a water molecule. We 
emphasize, however, that the bond percolation calculations 
are very insensitive to the lattice chosen-indeed, calcula­
tions for a Cayley tree give essentially the same curves for 
M < 30 (Ref. 18) (a Cayley tree pseudolattice assumes that 
each water monomer can interact with up to z other mon­
omers, that the monomers are not constrained to a lattice, 
and that cycles have a negligible effect on the distribution 
functions). The percolation calculations for the ice lattice are 
carried out analytically for M<6 (see Appendix B), and the 
exact expressions are given in Table I. For M> 6, the analyt­
ic calculations become prohibitively complex due to the im­
mense number of possible configurations. 

We see in Fig. 3 excellent agreement between the MD 
results from the two different bond definitions. Even more 
remarkable is the astonishing agreement between the MD 
simulation results and the percolation theory calculations 
which are carried out on the assumption of random bond 
formation. This agreement-with no adjustable param­
eters-may be explained by the fact that the observed nets 
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FIG. 3. MD results for WM ( pI, the weight 

fraction of molecules belonging to nets of 
size M = 2, 3, S, and 12 for definitions 
D I( +) and D2(O). The solid curves for 
M = 2, 3, and S are the random-bond perco­
lation calculations described in Appendix B. 
No adjustable parameters are used, so the 
agreement is rather remarkable. 
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are still relatively small, so that the local tetrahedral order is 
the most decisive factor. This explanation is supported by 
recent work showing that fair agreement is obtained when 
the lattice calculations are replaced with Cayley tree calcula­
tions. ls 

v. "PATCHES" OF FOUR-BONDED WATER 
MOLECULES 

In the previous section we considered the "transient 
gel" or infinite network formed by hydrogen bonds linking 
together individual water molecules. By itself, this network 
is not sufficient to explain the unusual behavior of H20 and 
0 20. For example, we need some mechanism that leads to 
increased density fluctuations if we are to explain the unusu­
ally large isothermal compressibility observed. Recently it 
was proposeds that the local density and entropy varied from 
point to point in the hydrogen bond network, and that these 
anomalous variations were correlated with the degree of 
bondedness of the water molecules. It is convenient but not 
necessary to focus mainly on those water molecules with 
four intact bonds; these form tiny regions or "patches" with­
in the gel network. It was suggesteds that the local density 
and local entropy of these patches is less than the global 
density and global entropy of the entire gel, thereby giving 

04 05 06 0.7 00 

TABLE I. Weight fraction WM of molecules belonging to M-molecule bond 
networks, as a function of the random bond probability p. The calculations 
are carried out for an ice Ih lattice and are exact to order M = 6. The case 
M = I is identical withfo ofEq. (2). A useful check on the accuracy of the 
calculations is the fact that the sum on M of WM must equal the total weight 

fraction of all molecules belonging to networks of any size.--.50 that the coef­
ficients of all successive powers of p must vanish identically. Also given, for 
comparison, is the exact result Wfl for a "Cayley tree," which corresponds 
to neglecting all networks containing closed loops; this is the Flory theory 
(see Ref. 18). 

WI =(I_p)4 

W2 = 4P(1 _ p)6 

W3 = 18p2(1- p)S 

W
4 

= 88p3(1 _ p)IO 

W, = 4SSp4(1 _ p)12 

W6 = 12p'(1 - p)12[198(1 - p)2 + S(1 - p) + I] 

Wfl = MA (M)p"-I(1 - p)2M+2 (valid for aIIMon Cayley tree, "Flory 

theory"), 

where 

A (M) = 4(3M)I/MI(2M + 2)1 

J. Chern. Phys., Vol. 80, No. 10, 15 May 1984 
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FIG. 4. Results ofan instantaneous snapshot of the MD simulation of2l6 
water molecules constrained to a cube of edge 18.6 A (shown in perspective). 
Part (al shows only intact bonds, as defined by definition D, with cutoff 
parameter VHB = - 56 ~ = - 4.2 kcal/mol, corresponding to nHB = 1.92 
or p = 0.48, well above the bond percolation threshold. In part (b) are shown 
as large open circles those molecules with four intact bonds. 

rise to a physical mechanism for the observed anomalies in 
the isothermal compressibility (density fluctuations), con­
stant-pressure specific heat (entropy fluctuations), and ther­
mal expansivity (coupled density/entropy fluctuations). 
These suggestions have recently received support from the 
small-angle x-ray scattering data of Bosio et al. lo which dis­
play Lorentzian behavior with characteristic length scale of 
8 A, coincident with the characteristic length scale of the 
four-bonded patches calculated by MD. Moreover, in these 
calculations the local density in ST2 water has been probed 
and found to be decreased in the vicinity of the patches.9 

7.5 

100W· 
1 

I 
/ 

I 

I 
I 

/ 
-.... 

,/ " 
\ 

\ 

\ 
\ 
\ 
\ 
\ 
\ 

/ 
/ 5.0 

2. 
A .­

£. 

/ 
/ 

I 

I 
/ 

I 

I 
/ 

/ 

\ 
\ 
\ 
\ 
\ 

For these reasons, a detailed connectivity analysis of the 
four-bonded molecules was carried out. For typical realistic 
values of V HB' the bond nets are well above the bond percola­
tion threshold (so that virtually all of the water molecules 
belong to the infinite cluster), but the patches offour-bonded 
molecules can still be relatively small. This fact is illustrated 
in Fig. 4. Part (a) is an instantaneous snapshot of the system 
showing the bond networks, while part (b) shows by a circle 
each of the four-bonded molecules. 

To study the distribution functions W:'(p) characteriz­
ing patches or clusters of four-bonded molecules, we ana­
lyzed the MD simulations in an analogous fashion to that 
used above for bond nets. When in definition Dz there occurs 
a molecule with five intact bonds, it is also considered to 
belong to the patch. 

Figure 5 shows the distribution function Wf(p) for a 
"one-molecule patch"-i.e., a single four-bonded molecule 
whose neighbors are not four bonded, while Fig. 6 shows 
W:'(p) for s = 2, 3, 5, and 12 in analogy to Fig. 3. Again, 
excellent internal consistency between bond definitions DI 
and D2 is found. The statistical accuracy decreases with in­
creasing s, because the absolute number of patches de­
creases. Near the maxima, the statistical error increases 
from 5% for s = 1 to about 30% for s = 12for definition D I , 

while for D2 the error increases from about 2% for s = 1 to 
about 10% for s = 12. 

The continuous curves in Figs. 5 and 6 give the predic­
tions of correlated-site percolation theory W~(p). For s<6, 

\ 
\ 

FIG. 5. MD results for W~(p), the weight 
fraction of molecules belonging to patches 
(clusters of four-bonded molecules) of size 
s = 1 for definitions D,( + ) and D2(O). Also 
shown are the predictions of correlated site 
percolation (full line) and random-site perco­
lation (dashed line). 

\ 
\ 
\ 
\ 
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the calculations have been carried out analytically using the 
methods described in Appendix B; these exact results are 
given in Table II. 

For larger values of s, Monte Carlo simulations were 
carried out for a finite lattice of 21 000 molecules; these re­
produce the analytic results for s..;;6 and are believed reliable 
for s> 6. The statistical accuracy of these calculations was 
found to be better than 1 %. To test whether the correlation 
was responsible for the agreement, we also considered the 
cluster distribution functions W: for randomly distributed 
sites. Analytical results of W: for the ice lattice are not avail­
able, but for the closely related diamond lattice they are 
known up to s = 12. 19 These continuous curves are shown 
dashed in Figs. 5 and 6. the MD results clearly agree much 
better with W~. Thus it is not percolation concepts in gen­
eral but correlated site percolation in particular that is rel­
evant to the MD data. 

We note that for s = 1, Wf(p) < Wf(p) over the entire 
range of p. This result reflects the fact that in correlated site 
percolation, sites tend to "clump" together more than in 
random site percolation. Thus the probability of finding 
small clusters diminishes. With increasing values of s, we 
also observe the opposite behavior: W; > W:-at first only 
for small values of p and then for larger values, thus leading 
to an intersection of the curves W;(p) and W:(p). By this 

100 W2 ,..., 100Wj / \ 
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I I 21. I 
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the initial "excess" for small s is compensated at larger val­
ues of s, because the sum over all probabilities at a fixed value 
of p must be constant and equal to one. 

As stated above, the MD data agree much better with 
the results of correlated site percolation theory than with 
random site percolation theory. On a finer scale, we note an 
interesting systematic behavior: the small deviations of W: 
from W; are always in the opposite direction compared to 
the random site probabilities W:. In other words, when 
W; < W:, the MD data W: are even smaller than W;, and 
in the opposite case even larger. The intersection between the 
W; and W: curves is also near the previously discussed 
intersection between W; and W:. 

This behavior can be interpreted as the manifestation of 
a weak additional cooperative effect, which increases the ten­
dency of clumping together beyond the pure statistical cor­
relation of sites. Of course, the underlying mechanism can­
not be reinforcement of hydrogen bonds due to many-body 
interactions because the simulation is done on the basis of 
pairwise additive forces, but is probably a weak mutual stabi­
lization of four-bonded water molecules, comparable to the 
mutual stabilization of larger structural entities, like water 
octomers, as discussed by Stillinger.20

•
21 Also the observa­

tion of increased hydrogen bonding in the vicinity of hydro­
phobic particles seems to be a related effect. 22 
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FIG. 6. Same as Fig. 5, except that s = 2, 
3, 5, and 12. The agreement between the 
MD results and correlated-site percola­
tion theory is quite striking. 
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TABLE II. Exact ice lattice expressions for W: for the weight fraction of water molecules belonging to 

a patch of s molecules. Also given is the Flory theory expression (Ref. 18), where A (s) is defined in Table 
I. 

Wr = p4(1 _ p3)4 

W! = 4p7(l _ p3)6 

Wr = 18p lO(1 _ p3)8 

W: = pl3[46(1 _ p3)10 + 36(1 _ p3)8(l _ 2p3 + p5) + 6(1 _ p3)6(1 _ 2p3 + p5)) 

Wt = pI6[63(1 - p3)12 + 208(1 _ p3)IO(l _ 2p3 + p5) 

+ 107( I - p3)8(l _ 2p3 + p5)2 + 2( I _ p3)6( I _ 2p3 + p5)3 

+ 15(1 _ p3)9(1 _ 3p3 + 2p5 + p6 _ p7) + 30(1 _ p3)1O(1 _ p2) 

+ 30(1 - p3)8(1 _ p2)(1 _ 2p3 + p5)] 

W: = 9p 18(1 _ p3nl _ 2p3 + p5) 

+ 3p 18(1 _ p3)12 

+ 24p 19(1 _ p3)6(1 _ 2p3 + p5)4 

+ 4p 19(1 _ p3)6(1 _ p2)(1 _ 2p3 + p5)3 

+ 4Op 19( I _ p3)9( I _ p2)( I _ 3p3 + 2p5 + p6 _ p7) 

+ 18p 19(1 _ p3)8(1 _ 3p3 + 2p5 + p6 _ p7)2 

+ 239p 19(1 _ p3)8(l _ 2p3 + p5)3 

+ 134p '9(1 _ p3)8(1 _ p2)(1 _ 2p3 + p5)2 

+ 142p '9(1 _ p3)9(1 _ 2p3 + pS)(1 _ 3p3 + 2ps + p6 _ p7) 

+ 637p 19(1 _ p3)IO(l _ 2p3 + p5)2 

+ 331p 19(1 _ p3)IO(l _ p2)(1 _ 2p3 + p5) 

+ 36p 19(1 _ p3)1O(1 _ p2)2 

+ 18p 19(1 _ p3)"(4p _ 7p2 + 3p3) 

+ 61p l9(l _ p3)"(1 _ 2p3 + p5)(1 _ 3p3 + 2p5 + p6 _ p7) 

+ 44Op 19(1 _ p3)12 + 173p 19(1 _ p3)12(1 _ p2) + 79p 19(1 _ p3)14 

W: [Flory theory) = sA (S)P3H 1(1 _ p3f'+ 2 

VI. AVERAGE NETWORK SIZES 

From the complete distribution of bond net sizes 
WM(p) for all M, one can calculate the average size of the 
finite bond nets,23 

SIp) = L MWM(p)· (4) 
M;.\ 

The corresponding average cluster size S*(p) can be ob­
tained from the distribution functions W:( pl. Both S (p) and 
S *(p) are shown in Fig. 7 for both bond definitions. 

Percolation theory predicts for our finite system a sharp 
peaking of these functions at the respective percolation 
thresholds Pc and p~. The values of nHB where the maxima 
occur are in perfect agreement with the corresponding criti­
cal values obtained from the Monte Carlo simulations on the 
ice lattice, Pc = 0.388 and p~ = 0.795. Not only are the 
threshold values for the MD data the same as in percolation 
theory, but even the critical exponents describing the singu­
larity in S (and in S *) are the same. 24 

These two percolation points have played some role in 
recent discussions on the properties of liquid water. As had 

been conjectured in one of the early "gel model" ap­
proaches2s and confirmed by MD calculations, 4 liquid water 
is always above the bond percolation threshold-at nHB 

~ 1.53. On the other hand, in an attempt to explain the unu­
sual properties of water, it was proposed8 that water was 
below the percolation threshold of the four-bonded mole­
cules-at nHB ~3.18. Combining these two pictures, one 
may state that the hydrogen bond connectivity ofliquid wa­
ter is somewhere in the region limited by the positions of the 
two maxima in Fig. 7. 

VII. DISCUSSION AND SUMMARY 

In this work we have tried to answer the question of 
how to describe hydrogen-bonded aggregates of water mole­
cules; more generally, we have examined how a local interac­
tion, the hydrogen bond, leads to global properties of the 
macroscopic network we call water. This question is ad­
dressed, at least indirectly, by all ofthe numerous structural 
models of water that have been proposed during recent de­
cades. 

The following picture emerges from our analysis of the 
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ST2 MD calculations: water appears to be a macroscopic, 
space-filling gel-like network4

•
8

•
2s held together by relatively 

short-range microscopic hydrogen bonds between neighbor­
ing molecules; the network contains small regions (patches) 
of increased connectivity, and associated with these patches 
is a decreased local density. This structural picture of water 
combines ideas of continuum models (the extensive distorted 
hydrogen-bond network) with older ideas of mixture models 
(small regions with different local order and density). These 
two views of water are traditionally considered mutually ex­
clusive. We have seen that depending on which questions we 
ask, either viewpoint can emerge: Questions of hydrogen 
bond networks require a continuum picture while questions 
concerning locally structured regions require the structured 
patches provided by the statistics of the four-bonded mole­
cules. For example, measurements like neutron scattering 
experiments, designed to investigate the average microscop­
ic structure ofliquid water, will favor the continuum picture, 
whereas the measurement of fluctuation-determined ther­
modynamic properties like the compressibility or heat ca­
pacity will be explained by the presence of the structured 
patches. 

3.18:!:005 

4.0 

FIG. 7. Peaks at nHB = 1.53: MD re­
sults for the average sizes of finite 
bond networks for bond definitions 
D 1( +) and D2(0); peaks at nHB 

= 3.18: average size s· of the finite 
patches of four-bonded molecules 
for D 1( + ) and D2(0). The value of 
nHB corresponding to "real water" is 
presumably somewhere in between 
the two peaks, so that water is above 
the bond percolation threshold but 
below the percolation threshold of 
the patches of four-bonded mole­
cules. 

Perhaps the most striking feature of the above analysis 
is the degree of quantitative agreement-without adjustable 
parameters-between the MD simulations on the one hand 
and the predictions of percolation theory on the other. Rep­
resentative examples of this agreement are shown in Figs. 2, 
3,5,6, and 7. The initial assumption of random bond forma­
tion underlies all the percolation calculations. Thus the 
agreement with percolation theory of the microscopic distri­
butions functions WM and W:, as well as the macroscopic 
parameters like the mean cluster size, the percolation thresh­
old, and even the exponents characterizing the singular be­
havior at the percolation threshold strongly suggests that on 
the time scale of bond formation these bonds form random­
ly. 

But even in our simple case of strict pair additive inter­
actions, we cannot claim that there is absolutely no "cooper­
ativity" in bond formation. Indeed, small but apparently sys­
tematic deviations from the cluster distributions obtained 
from percolation theory applying the random bond assump­
tions may reflect the presence of a weak cooperative effect, 
which leads-by mutual stabilization of four-bonded mole­
cules-to an increased formation of larger clusters of four-
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bonded molecules. Additional MD calculations are under­
way to study the possible increase of this effect at lower 
temperatures. In "real" water, a contribution to the tenden­
cy of clumping together might be expected due to the pres­
ence of many-body interactions26 which are not explicitly 
included in the ST2 simulations. 

Furthermore, the present studies refer exclusively to 
"snapshots" of the hydrogen-bond network and do not con­
tain any information about the dynamics of the system. Since 
the "transient gel" of liquid water is distinguished from a 
more familiar "chemical gel" by the picosecond lifetime of 
the bonds, the network is continually restructuring itself. 
Obviously there must be relations between the mean lifetime 
of single bonds, the lifetime of larger aggregates, and the 
magnitude of transport coefficients. There have not been 
many attempts to elucidate these connections. 27 Since in the 
supercooled region singular behavior of transport coeffi­
cients has been observed, the results of the present studies 
should be supplemented by a study of the dynamic proper­
ties of the hydrogen bond network, and these studies are 
underway. 
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APPENDIX A: CORRELATION BETWEEN 
CONNECTIVITY AND "LOCAL" DENSITY 

To show that decreased local density occurs within 
patches of increased connectivity, we discuss the results 
shown in Fig. 8. In these graphs we correlate the number n of 
neighbors j, which we find within a sphere of radius rc 
around some reference molecule i, with the sum Ui of the 
corresponding pair interaction energies vij ' 

n 

Ui = I vij · 
j#i 

(AI) 

Here U i is the binding energy of the reference molecule i with 
respect to its n neighbors in the sphere of radius rc; it is a 
measure of the local connectivity, which is more general 
than the hydrogen bond picture and which avoids the arbi­
trary definitions of a hydrogen bond D J and D 2• 

Due to the fluctuation of the local density, we observe a 
range of numbers n. We now calculate the average binding 
energy as a function of the number of neighbors n 

u = (U,.) n = const. (A2) 

These values are shown in Fig. 8 for four different choices rc; 
the vertical bars indicate the mean square deviations from 
the averages u. 

These deviations are smallest in the central part of the 
graphs, because those numbers of neighbors n we find most 
frequently and therefore we have many contributions to the 

n n of" 
-5~--~----~--------- -5~----~------~----~ 

FIG. 8. Correlation between the num­
ber n of neighbors found within a 
sphere of radius rc around some refer­
ence molecule and the corresponding 
building energy u of this molecule 
(E = 0.075 75 kcal/mol). We find 
"normal" decrease of u with n, when 
choosing rc = 5.5 A, but "typically 
water-like" increase for rc = 3.5, 4.5, 
and 6.5 A. 
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corresponding averages. Through these more reliable points 
a dashed guidance line has been drawn. Averages from less 
than 100 contributions, which occur at the outermost wings 
of the distributions (very high and very low n) are not consid­
ered in these graphs. 

We see that for rc = 5.5 A the average binding energy u 
decreases with an increasing number of neighbors within the 
sphere of regarded interaction. This is what we would expect 
from a "normal" liquid like a Lennard-Jones liquid at not 
too high packing densities, because the addition of another 
interaction partner will add a negative (attractive) contribu­
tion vij • However, in the cases rc = 3.5, 4.5, and 6.5 A, we 
observe exactly the opposite behavior; u increases with in­
creasing local density. This means that a less dense local ar­
rangement of the water molecules is energetically favorable 
over more dense structures; a behavior that we regard as 
typically "water-like" is related to the occurrence of the 
anomalies. 

The observation that for some choices of rc we get the 
picture of a normal liquid has already been reported in a 
previous paper and can be explained by the oscillatory na­
ture of the pair correlation functions, which describe the 
local structure of water. Figure 2 of Ref. 9 indicates a de­
creased local density around four-bonded water molecules 
when using rc = 3.5, 4.5 or 6.5 A, whereas for the choice rc 
= 5.5 A no such difference can be observed. 

Thus the present results shown in Fig. 8 confirm and 
also generalize our previous finding of a correlation between 
increased connectivity and decreased local density. 

Furthermore, concentrating on the graph for rc = 3.5 
A (a value which had been used before as the limiting dis­
tance for hydrogen bonds), Fig. 8 indicates a marked mini­
mum of u at n = 4. This indicates again a strong energetic 
preference for four-coordinated local structures. 

APPENDIX B: PERCOLATION THEORY APPLIED TO 
HYDROGEN BOND NETWORKS 

Here we adapt conventional.random bond percolation 
to calculate the microscopic distribution functions W M ( p) 
(for nets of water molecules) and W:,( p) (for patches off our­
bonded water molecules). 

We begin with two important assumptions: 
(i) Bond formation in liquid water is more or less ran­

dom on the time scale of picoseconds. 
(ii) A lattice may reflect to some degree the local struc­

ture of hydrogen bonds in water. The similar ice and dia­
mond lattices as well as the Cayley tree pseudolattice are all 
possible choices. 

For any lattice we choose, assumption (ii) breaks down 
at some characteristic length scale. Of ice, diamond, and 
Cayley tree, the ice lattice agreed with the MD results to the 
largest length scale, about M = 50. We emphasize, however, 
that there must certainly be some limit to this surprising 
agreement; water does not have the same connectivity as ice. 
We also recognize that the ST2 potential used in our simula­
tion has been criticized for being too directional, a fault 
which might lead to an excessively ice-like hydrogen-bond 
structure. In any case, the ice lattice seems to be a good 
choice, though diamond might be just as good. 

Consider an infinitely large ice lattice with a fraction p 
of its bonds intact and a fraction (1 - p) of its bonds broken 
at random. The functions WM(p) and W:'(p) which we have 
described as weight fractions can now be thought of as pro­
babilities. For instance, the weight fraction of nets of water 
molecules of size M = 2 is simply the probability that a ran­
domly chosen water molecule belongs to such a net. To do so 
it must satisfy several conditions: it must have one bond con­
necting it to another molecule; all its three other bonds must 
be broken; and all of its partner's three other bonds must be 
broken. Such a configuration is shown in Fig. 9(a). Thus we 
require a total of one intact bond and six necessarily broken 
bonds, and the probability of this configuration is just 
p( t - p)6. On the ice lattice there are four possible orienta­
tions for size-2 nets, hence 

(Bt) 

FIG. 9. Configurational examples to illustrate the calculation of cluster pro­
babilities (al W M ~ 2 (pI, (b) w:, ~ 1 (pI, (cl w:, ~ 2 (p). Intact and broken bonds 
are indicated by full and open bars. 
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To continue this process for larger nets, we enumerate 
all possible configurations of the M molecules, keeping track 
of the number of necessarily intact and broken bonds in each 
as well as the number of possible orientations. The resulting 
WM(p) is 

N 

WM(p)= L (numberoforientations)i(n)(I-p)b(n), 
n=l 

(B2) 

where there are N configurations, and i(n) intact and b (n) 
broken bonds in configuration n. The limiting factor in this 
calculation is the calculation time to enumerate the large 
number of configurations possible for large M. The exact 
formulas for M = 1 to M = 6 are given in Table I. 

The calculation of W:,( p) is slightly more complicated 
because we must consider a large number of bonds even for 
small patches. For instance, consider W:'(p) for s = 1, the 
weight fraction of isolated four-bonded molecules. This is 
the probability that a randomly chosen molecule will be four 
bonded and that none of its neighbors will be four bonded, a 
condition which involves 16 bonds. We show such a configu­
ration in Fig. 9(b). It is immediately clear that this bond 
configuration is by no means the only one that leads to an 
isolated four-bonded molecule. The neighboring molecules 
may have either 1, 2 or 3 intact bonds each-it makes no 
difference, as long as they do not have 4. The easiest way to 
find the probability that a neighbor site is not four bonded is 
to find the probability that it is four bonded and subtract. If 
the center molecule is already four bonded, then each neigh­
bor molecule only needs three more bonds to be four bonded. 
Thus the probability that each neighbor molecule is not four 
bonded is (1 - p3). In this way we find 

W:,= 1 (p) = p4(1 - p 3t (B3) 

We refer to the (1 - p3) factors as "perimeter" terms, terms 
that describe the necessary conditions of the molecules im­
mediately next to the molecules in the patch itself. For 
W:, = 2 (p) the perimeter terms are still relatively simple. 
From Fig. 9(c) we see that there are seven bonds which must 
be intact and six perimeter molecules which must not be four 
bonded. Noting that there are four possible orientations of 
an s = 2 patch on an ice lattice, we have 

W:'=2(p)=4p7(I- p3)6. (B4) 

Extending this process to larger patches is difficult because 
of the increasing complexity and variety of the perimeter 
terms. Complications arise when a single perimeter molecule 
shares bonds with more than one molecule in the patch, and 
when perimeter molecules share bonds with each other. In 
general we find 

N 

W:,( p) = L (number of orientations) 
n=l 

X i(n) (perimeter terms), (B5) 

where there are N configurations with i(n) intact bonds in 
configuration n. In practice, we determine perimeter terms 
for a certain number of commonly found configurations of 
perimeter molecules; then we enumerate all possible config­
urations of the s-molecule patch and piece together the pe­
rimeter terms as we recognize familiar patterns in the neigh-

bor molecules. Exact results through $ = 6 are shown in 
Table II. This enumeration and recognition process is car­
ried out by computer, but those perimeters which the algo­
rithm does not recognize are left for individual considera­
tion. With this method the limiting factor is the increasing 
complexity necessary in the computer program, whereas in 
the W M( p) calculation the limiting factor was only calcula­
tion time. We could overcome the programming problem by 
enumerating all possible bond configurations for each s-site 
patch, but there is not much to be gained by this method 
since the number of bond configurations grows very quickly 
for even small s (~212 possible for $ = 1). 

For large M and large $ we turn to another method, a 
Monte Carlo calculation. Imagine a large but finite ice lat­
tice. Using a random number assign intact bonds with prob­
ability p. Then we count the nets or patches in the resulting 
lattice using an algorithm originally described by Hoshen 
and Kopelman.28 To determine the weight fractions W M( p) 
and W:'(p) it is desirable to use as large a lattice as possible, 
considering memory and computing time limitations, and to 
perform as many realizations as possible at a variety of val­
ues of p. Because we must use discrete values of p, the curves 
we find are really a series of points. These curves are approxi­
mations to the exact functions that we derive by the method 
of enumeration described previously, and they reproduce 
the exact solutions very well. In addition, the Monte Carlo 
method can be used to determine approximations for much 
larger M and $, the only limitations being lattice size and 
computation time. A typical large lattice for our Monte 
Carlo calculations contains 22 X 22 X 44 sites and 
2 X 22 X 22 X 44 bonds, with at least 200 realizations for each 
value of p. Under these conditions the statistical uncertainty 
for W:, appears to be reasonably small up to at least s = 50. 
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