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Abstract

We study the changes in the topology of the hydrogen-bond network when
penetrating into the metastable region of water. The statistics of four-bonded water
molecules as well as of bond-rings are evaluated. We also give some evidence for
the existence of numerous clathrate-like holes in liquid water. Finally, we
exemplify the influence of hydrogen bonding on the microdynamic properties of
water and deduce a simple explanation for the occurrence of hydrophobic
hydration.

1 INTRODUCTION

The structure of liquids is usually described by pair correlation functions. But
obviously this information is not sufficient to understand the properties of water, as
one can deduce from the fact that in the literature various structural models have
been proposed and discussed, which all contain in some form higher correlations
between the water molecules (see for example Frank 1972, Stillinger 1977).
Unfortunately, there are only very limited experimental possibilities for getting
structural information which go beyond the pair distribution function. Therefore,
we perform molecular dynamics (MD) computer simulations of a waterlike model
liquid (Stillinger and Rahman 1974), extracting details which are considered in the
structural models.

One of the most prominent features of water molecule interaction is the
formation of hydrogen bonds. In the crystalline forms of water this leads to the
development of a complete, regular and quasi-infinite network, each water
molecule acting as the origin of exactly four hydrogen bonds. On melting, the
distribution of existing hydrogen bonds becomes broader with respect to the range
of bond angles, lengths and strengths which occur. Some of the occurring
arrangements may be characterised as broken and some as branched hydrogen
bonds. Moreover the lifetime of individual bonds becomes very short. As a
consequence, the network of hydrogen bonds will become irregular and distorted
and subject to a constant restructuring, but, as previous computer simulation
studies have shown very clearly, at any instant and for any reasonable definition of
a hydrogen bond, there will exist an ‘infinite’ network, spanning the whole system
and encompassing many finite, disconnected networks of various sizes. In other
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words, the system will be above the bond percolation threshold (Geiger et al
1979b).

During the past few years a detailed and quantitative description of the existing
network has been achieved using the concept of percolation theory (see for
example Stanley et al 1984). Nevertheless, to explain the properties of water it is
not sufficient to know the topology of the network. Therefore, several authors
directed their attention to various structural units which are produced by and
embedded in the bond network and which induce a decreased local density and
increased local order. These are four-bonded molecules (Stanley and Teixeira
1980), pentagonal bond rings (Speedy 1984), unstrained bulky polyhedra (Stillinger
1980a,b) and clathrate-like cavities (Pauling 1959), all of them structural sections of
bulky crystalline forms of water, the simpler units serving as building blocks for the
more complex ones. The clustering of such units leads to the formation of extended
‘patches’. Thus, the statistical nature and the constant restructuring of the network
provide a mechanism to produce the observed fluctuations of density and entropy
(Stanley and Teixeira 1980, Geiger and Stanley 1982).

As the careful study of the properties of supercooled water revealed, these
fluctuations seem to increase without limit, when approaching a low temperature
‘singularity’ line in the p, T diagram (Angell 1983a,b, Lang and Liidemann 1982).
This has been conjectured by Speedy to be a spinodal line, forming the boundary of
a connected uniform region of metastable (supercooled, ‘stretched’ and super-
heated) water and marking the limit of its mechanical stability ( see figure S of
Speedy 1982). There has also been speculation that the structural explanation for
this thermodynamic behaviour may be found in the approach to a percolation
threshold for the low density, higher order patches or some other kind of
order—disorder phenomenon (Stanley and Teixeira 1980, Stillinger 1980a).

In this paper we study the changes in the hydrogen-bond network when
penetrating into the metastability region of water; we look at the statistics of the
four-bonded water molecules as well as of bond rings. Furthermore, we give some
evidence for the existence of numerous clathrate-like holes in liquid water, and
finally we exemplify the influence of hydrogen bonding on the microdynamic
properties of water.

2 MD SIMULATION OUTLINE

Most of our former hydrogen bond analysis refers to a system of 216 water
molecules interacting via an ST2 pair potential (Stillinger and Rahman 1974),
density and temperature being p = 1.0gcm™ and T = 284 K. To study the
structural changes which occur in the metastable region and to separate the
influences of temperature and density, we performed two supplementary series of
simulation runs. In the first the density was kept constant at p = 1.0 g cm~3, while
the temperature was decreased in several steps from 287 to 235 K. Details of the
simulation technique and many results have been published and can be found in the
paper of Geiger et al (1984).

In this paper we now compare these constant-p results with those of a new
simulation series, where we varied the density from p = 1.0t0 0.7 g cm ™3, keeping
the temperature approximately constant at T = 273 K. As in the constant-p series,
we use a cut-off distance r, = 7.8 A for the direct water-water interaction,
combined with a reaction field (Steinhauser 1982). Since we have to cope with
increasing fluctuations and increasing relaxation times when penetrating into the
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metastable ‘stretched water’ region and approaching the conjectured spinodal, we
apply equilibration runs of increasing duration, extending up to 300 ps at the lowest
densities (see figure 1 for characterisation of the runs). During the subsequent
‘production’ period of 12 to 25 ps every eighth configuration was saved on tape and
examined more extensively later. The results discussed in the following always refer
to those periods, which are shown hatched in figure 1. This procedure was adapted
to our use of lowest-priority computer time on a special configuration of a VAX
780/FPS 164 with very limited mass storage access. The attainment of equilibrium
was controlled by monitoring among other quantities the structure factor §(Q) for
the lowest accessible Q values (Q,,;, = 27/L, where L is the size of the periodic
box containing our 216-particle system).
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Figure 1. Schematic representation of simulation runs: length of equilibrium periods and periods of analysis (hatched),
density and average temperature.

3 HYDROGEN-BOND DEFINITION

Since the hydrogen-bond interaction between two water molecules is described by a
continuous function of mutual separation and orientation without any saddle
points, there is no natural and unambiguous choice for a dividing line between
‘broken’ and ‘intact’ hydrogen bonds. As in the previous studies we use the
following criterion: two molecules i and j are considered to be hydrogen bonded
whenever their interaction energy V; lies below a negative cut-off value Vg and
their mutual oxygen—oxygen separation is less than 3.5 A.

Scanning the continuum of interactions by .varying Vyg and observing the
changes so caused in the pattern of the bond network, delivers a detailed picture of
the molecular connectivity. This procedure not only adjusts the usual notion of
broken and intact hydrogen bonds to the reality of the continuum of interactions,
but furnishes a basis for the application of percolation theory: for each choice of
Vup an average number of hydrogen bonds per water molecule <nyg> is obtained,
from which one can derive a parameter p = <nyg>/4; p can be identified with the
fraction of intact bonds, the fundamental independent variable in bond percolation
theory.

Varying Vg from the most negative values close to the absolute minimum of the
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ST2 pair potential (—6.8 kcal mol~') up to values near zero, requires that we start
with an extremely strict definition of a hydrogen bond and become more and more
permissive. Accordingly the number of observed hydrogen bonds per molecule
<nyp> will vary from near zero to values close to four and p from 0 to 1
correspondingly (Blumberg et al 1984, Geiger et al 1984). In the following we
discuss various properties as they appear as a function of the number of hydrogen
bonds, thus using <nyp> and p as independent variables. But it should be kept in
mind that this variation is always obtained by varying Vyg. Hence, these curves
indicate the changes in the appearance of the network, when looking for hydrogen
bonds of various strengths.

4 LOCAL ARRANGEMENT OF HYDROGEN-BONDED MOLECULES

As it has been proposed by Stanley and Teixeira (1980) and shown subsequently for -

‘computer water’, the fraction f; of water molecules with exactly j intact hydrogen
bonds can be described by a simple binomial distribution

fist(p) = (‘})pi(l — p)*

over a large range of p = <nyp>/4. Only for j > 2 and values of <n;;> above 3.0
can noticeable deviations be seen (Blumberg ez al 1984, Geiger et al 1984). These
discrepancies at large <nyp> can be attributed to deviations from the strict local
tetrahedrality of the network: if weaker bonds are also considered, bifurcated
hydrogen bonds and molecules with five bonds may occur. ’

Figure 2 shows for j = 3 and 4 and for several densities p the deviations Af; of
our mMp results fjp from the binomial distribution fjsr. Starting from
p =1.0gcm™3 the binomial distribution becomes more and more valid with
decreasing density. At p = 0.75 g cm~ the deviations are less than 0.01 over the
whole range of <nyg> values up to <nyp> =~ 3.8. This indicates that there are fewer
and fewer molecules with five bonding possibilities; the network becomes locally
more tetrahedral with decreasing density.

At p = 0.70 gcm™ a sudden change occurs, indicated by strong deviations
appearing again. We explain this by a decomposition of the system at this low
density and negative pressure state.

The strong density-dependence of Afi(p) is contrasted by the temperature
dependence at constant density. Although p increases with decreasing temperature
for fixed Vyg, in that case the Afi(p) curves for different temperatures almost fall
on top of each other (see figure 3 of Geiger et al 1984).

As we will see more clearly later on, on lowering the density the topology of the
hydrogen-bond network seems to gradually approach the topology of low-density
amorphous ice (note our comment on this at the end of § 7). On achieving close
agreement (near p = 0.75 g cm~3), the mechanical stability of the ‘stretched water’
seems to be lost and the system disrupts. Here it is quite interesting to remember
that Speedy predicted a density of p = 0.81 gcm™> at the conjectured limit of
stability of ‘stretched water’ (Speedy 1982). The similarity of these densities is even
closer, if one recalls that the ST2 model tends to produce slightly too low densities
of the bulky ice forms (Morse and Rice 1982).

Another recommendation for the gradual approach to the low-density ice
structure is given in figures 3 and 4. Figure 3 reveals an extremely unusual
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Figure 2. Fraction f; of water molecules having exactly j intact hydrogen bonds (for j = 3 and 4): deviations of MD
results from binomial distribution (sT).

behaviour of the oxygen—oxygen pair correlation function goo(r). The oscillations
of goo(r) become more pronounced and in particular the height of the first peak
increases with decreasing density. This is totally opposite to the behaviour that one
expects from simple liquids but demonstrates the development of a more ordered
structure with decreasing density. Also, the slight shift of the second peak to larger
distances indicates the formation of more linear hydrogen bonds.

Integrating over the first peak of goo(r) up to the first minimum yields the
number of nearest neighbours n(r). This quantity is shown in figure 4 and indicates
again, in accord with our previous interpretation, a clear tendency towards a
tetrahedral, icelike surrounding when lowering the density.
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Figure 3. Density dependence of oxygen—oxygen pair correlation function goo(r). For p = 0.7 g cm—3 only the peak
values deviate from the curve for p = 0.8 gcm™3.
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Figure 4. Number of nearest neighbours obtained by integrating over the first peak of goo(r). The bottom axis shows
density p (gcm3).

§ SIZE DISTRIBUTION W5 (p) OF CLUSTERS OF FOUR-BONDED
MOLECULES

To get a more detailed and quantitative description of the hydrogen-bond network,
we calculated, in our previous studies, distribution functions giving the weight
fraction W} (p) of water molecules, whlch belong to ‘bond-nets’ of M molecules.
Likewise we determined the corresponding weight fraction W (p) of molecules,
belonging to ‘clusters’ of s connected water molecules, which all have exactly four
intact hydrogen bonds. It was quite striking to see the degree of quantitative
agreement between the MD results and the predictions of percolation theory.
Nevertheless, a closer inspection of W;(p) revealed a small but systematic
difference (Blumberg et al 1984).

'R
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It had been speculated that these deviations indicate an increased tendency for
aggregation of the four-bonded molecules, which goes beyond the correlations built
into the percolation model. Another reason could just be the deviation from the
assumed lattice topology in the percolation model.

We expected to get a hint as to the correct explanation from the temperature and
density dependence. Our constant-density simulation series showed no change with
temperature of the difference between the Mp results and the Stanley-Teixeira
percolation model (st). Within the accuracy of the MD result the AW; (p) curves
fell on top of each other (Geiger et al 1984). In contrast to this, when varying the
density at roughly constant temperature strong changes can be observed (figure 5).
With decreasing density, the differences AW (p) decrease and are close to zero
near p = 0.75 g cm~3. On further decrease of the density, at p = 0.70 g cm ™3, the

., deviations again increase, but now in the opposite direction.
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Figure 5. Size distribution of clusters of four-bonded molecules W; (p): deviation of MD results from percolation theory
(sT) for clusters of size s = 3 and 5.
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This behaviour parallels that of Af; (p) and also the explanation can be given
along the same lines. Whereas the pure temperature influence does not change the
topology of the network, decreasing the density leads to a more tetrahedral, more
icelike network topology. The maximum agreement is again reached at
p=075gcm™3, .

The following has to be emphasised: when we talk of an approach to icelike
structure, we do this in the sense of close agreement with percolation calculations,
which have been obtained by underlying the topology of an ice Ih lattice. The use of
cubic ice does not change the percolation results so much that detectable
differences occur. The same would probably be true even for some kind of
amorphous ice, which contains for example also five- and seven-membered bond
rings. On the other hand, as was shown earlier, the differences between lattice
percolation and Flory theory (which neglects bond cycles) are already quite large

for W with s = 5 (Stanley ez al 1983), and the deviations of the Flory model from -

the MD results would increase with decreasing density.

In §7 we show that bond rings other than hexagons are present in appreciable
numbers, even in the density region where maximum agreement with lattice
percolation is obtained.

6 AVERAGE HYDROGEN-BOND NUMBER <ngp> AND AVERAGE CLUSTER
SIZE S,

In figure 6(a) the average number of hydrogen bonds <n;;> is shown as a function
of density at constant temperature T =~ 273 K for a series of definition values V.
Lowering the density results in an increased formation of hydrogen bonds, as if the
temperature were decreased. Between p = 0.8 and 0.75 g cm ™ <nyp> passes a
maximum3. This indicates an onset of rupture of the network at densities below
0.8gem™.
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Figure 6. Density dependence of (a) average number of hydrogen-bonds <ny> and (b) average cluster size S, for
different values of Vyp (¢ = 0.07575 kcal mol-1).
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From the existence of a nearly temperature-invariant point in the pair-energy
distribution Stillinger and Rahman (1974) suggested a value close to —4 kcal mol~!
as a realistic choice for Vyg. Therefore it is interesting to note that for
Vygg = —48¢ = —3.64 kcal mol~! the maximum value of <nyp> comes close to the
percolation threshold value of 3.18 (Blumberg et al 1984). This suggests the
possibility for unification of two major views about the nature of the singularity line
limiting the metastable water region: the existence of a percolation threshold for
low-density, high-local-order patches on one hand (Stanley and Teixeira 1980) and
the decomposition of the system when reaching a spinodal line on the other hand
(Speedy 1982).

Variation of Vy results only in a parallel shift of the <nyp> curves (figure 6(a)).
In contrast to this the density dependence of the average cluster size (summing only
, Over non-spanning aggregates)

S, = ' sWIS'We

becomes much more accelerated (figure 6(b)) when approaching the percolation
* threshold. Here again the maximum between 0.8 and 0.75 g cm~ and the following
decrease can be interpreted as indicating network rupture.

7 HYDROGEN-BOND RINGS

The knowledge of the probability of occurrence of bond rings and its dependence
on temperature and density is of special interest for the following reasons: Speedy
(1984) suggested that the presence and the aggregation behaviour of bulky
pentagons may be responsible for the observed density fluctuations and entropy
fluctuations in water; and low density ice, into which supercooled water nucleates
very easily, is composed of hexagons, without any pentagonal hydrogen bond rings.

Using the method of Rahman and Stillinger (1973), we determine the number of
hydrogen bond rings for different definition values Vyg. Figure 7 shows the number
of pentagons N5 and hexagons Ng per water molecule, as a function of temperature
T at constant density p = 1.0 g cm ™3 (figure 7(a)) and as a function of density at
roughly constant temperature T =~ 273K (figure 7(b)). The results for two
different Vg are shown.

In figure 7(a) we also draw a curve, predicted by Speedy (1984) for the
temperature dependence of pentagons at constant pressure p = 1 atm (see also
Speedy and Mezei 1985). One observes close agreement with our results for
Vup = —52¢ = —3.94 kcal mol~!, a definition value in accord with the considera-
tions of Stillinger and Rahman (1974). The stronger increase of Speedy’s prediction
is due to the fact that this curve also includes density changes. For both Vg, N5 and
, N4 show a marked parallel in the temperature dependence.

The density dependence of N5 and Ng is comparable with that of <nyp>.
Lowering the density leads to an increased number of pentagons and hexagons.
This indicates that the average structure of metastable water does not really
approach an ice lattice structure, because then pentagons should vanish. At most
one may say that the number of hexagons seems to increase slightly faster than that
of pentagons. Hence, speaking of an approach to the structure of amorphous ice
seems to be more appropriate. This is a result which conforms with recent neutron
diffraction experiments of Dore (p.89).
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Figure 7. Average number of hydrogen bond rings per water molecule as a function of (a) temperature and (b) density
for two different values of Vypg.

8 ‘HYDROPHOBIC CAVITIES’

To come finally to an even more complex structural unit, we mention here the first ‘

results of a recent study on cavities in water (Schnitker et al 1985). This study refers
only to one state, ST2 water at T = 283 K and p = 1.0 gcm ™3

To obtain information about the distribution of cavities, we apply the following
procedure. Using a random number generator, we statistically choose points in the
periodic box containing the 216 water molecules. Then we check whether there is
-any oxygen atom closer than some fixed distance d.. If we do find such an oxygen
atom we reject this point, otherwise we keep it. In this way we trace out the void
space. We did this for several values of d.. Figure 8 shows one representative
configuration: the cubic box of the 216 molecules with the points for d, = 3.0 A.
Now we bunch all those points into one group, which can be reached from some
other member of the group within a distance of d.. In this way we construct a small
number of distant ‘cavities’. (Of course, this procedure is only possible below the
percolation threshold of the cavities, which is situated somewhere near 2.6 A.)
Next, we choose a ‘centre’ of the cavity by searching the one point within the group
which has the greatest distance to its nearest oxygen.

In figure 9 we show the distribution of orientations of the water OH bonds with
respect to this centre at position 7. (for a choice of d, = 2.75 A):

cos 6 = fionfloc
with
fou = (ro—rw)/| ro—ru |
and
.aOc = (rO_rc)/l rO_rcI .

R
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If we number the water molecules according to their distance from the cavity centre
| ro—r. |, figure 9 represents the average over the three nearest neighbours. When

using molecules 4 to 8 and 9 to 16 the distributions become less pronounced, but
qualitatively they show exactly the same behaviour.

Figure 8. Distribution of cavities. Each point has a distance d_ of at least 3 A to the next oxygen.
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Figure 9. Distribution of orientations of the water OH covalent bond with respect to the centre of the cavities (three
nearest water molecules).
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It is striking to realise that the same shape of the distribution functions has been
observed when studying the orientation of water molecules in the hydration shell of
hydrophobic solutes (Geiger et al 1979a). Then the structure of the hydration shell
was characterised as ‘clathrate-like’, because the hydration shell molecules are
oriented in such a way that one of the four tetrahedral bond directions points
radially outward and the remaining three bond directions straddle the dissolved
particle.

Figure 10 gives another indication of the fact that the cavity wall structure is
comparable to the hydrophobic hydration shell. The correlation functions between
cavity centres and oxygen g.o(r) and hydrogens g 4(r) peak within a distance of less
than 0.2 A, indicating the straddling orientation of the OH bonds. A hump near
3.8 A is caused by the hydrogens pointing radially outward.
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Figure 10. Pair correlation functions cavity centre-oxygen (full curve) and cavity centre-hydrogen (broken curve).

These cavities with ‘hydrophobic’ or clathrate-like shell structure are quite
numerous. For d, = 2.75 A we observe 17 cavities per configuration. Using
d. = 3.0 A we still find on the average 5.7 cavities per 216 water molecules, one
cavity of a diameter (oxygen to oxygen) d = 6 A per 38 water molecules.

In figure 11 the cavity centre—cavity centre distribution function g.(r) is given
(for d, = 2.75 A). And here again we observe a striking parallel to earlier studies
concerning hydrophobic interaction. Simulating a neon pair dissolved in water, the
system settled in a ‘solvent-separated’ pair formation, the neons having an average
distance of about 6.0 A (Geiger et al 1979a). The structure of 8«(r) indicates a
similar arrangement (without dissolved particles), the separation of two adjacent
cavities by a shared water layer corresponding to two adjacent cavities in a clathrate
crystal.

The results reported in this section can be summarised as follows.

(@) In pure water we find a tendency for the formation of clathrate-like cavities,
as was postulated some time ago by Pauling (1959).

’®
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(b) Due to thermal motion such cavities fluctuate and collapse quickly. The
presence of nonpolar solute particles stabilises these structures, leading to the
phenomenon of hydrophobic hydration as well as solvent-separated hydrophobic
interaction.
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Figure 11. Cavity centre—cavity centre pair distribution function g.(r) for cavities of size d. = 2.75 A.

9 SELF-DIFFUSION

To give an idea of how the observed structural changes influence the dynamic
properties of metastable water, we present here the mean-squared displacements
<Ar¥(t)> of the water molecules as a function of decreasing density (figure 12(a))
anzi ;l)le self-diffusion coefficients obtained from the slope of these curves (figure
12(b)).

Although the temperature is kept roughly constant for all the systems, the
diffusional motion decreases drastically with density. This observation offers the
possibility of understanding the mechanisms governing the single particle motion,
which can probably be best understood along the lines suggested by Naberukhin
(1984): it is the switching of hydrogen bonds rather than the rupture that has to be
considered.

When a molecule is displaced, its hydrogen bonds with some neighbours become
weaker, and those with other neighbours simultaneously become stronger, so that
for example none of the hydrogens is at any moment outside the influence of
hydrogen-bond forces, as can be deduced from intramolecular OH oscillator
frequencies measured by IR spectra. This switching is possible if the system contains
a certain number of bifurcated moderately strong hydrogen bonds.

As we discussed before, decreasing the density means lowering the number of
neighbours and approaching a perfect tetrahedral local order. The number of
bonding possibilities and in particular the number of bifurcated bonds is then
reduced, leading to the observed decreased mobility.
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Figure 12. Density dependence of (a) mean squared displacement <Ar(#)> of water oxygens and (b) self-diffusion
coefficient D, obtained from the slope of <Ar(f)>.

10 SUMMARY AND CONCLUSIONS

We have demonstrated that density has a major influence on the topology of the
hydrogen-bond network. With decreasing density the local order becomes more
tetrahedral: the number of neighbours decreases to four and local arrangements
corresponding to more than four hydrogen bonds disappear. Moreover, the
agreement between the network statistics of the liquid and the results of the
percolation theory, which are based on the topology of hexagonal ice, becomes

(8
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very close. This does not mean that the real crystalline ice topology is obtained, as
one can see from the fact that bond rings of sizes other than six are still present in
appreciable numbers. Therefore, these structural changes are perhaps best
described by an approach to amorphous ice, in agreement with the recent neutron
scattering results of Dore (p.89).

A reversal in the tendencies of network structure changes is observed below a
density of p = 0.8 g cm™>. This can be explained as a manifestation of network
rupture. In this context, it is interesting to note that the density of 0.8 g cm™3 is in
agreement with the density extrapolated by Speedy for the conjectured spinodal
line which limits the region of metastability (Speedy 1982).

In contrast to the density dependence, the temperature dependence of the
network structure is very small. The influence of temperature should presumably
best be described by thermal excitation within the topological framework
determined by the density.

- Studying the influence of the changes in the hydrogen-bond network on the
microdynamic properties helps us to understand the mechanisms governing
molecular motions. The strong decrease in mobility with increasing tetrahedral
local order underlines the importance of a ‘switching motion’ between close
bonding possibilities, which appear at some instances as bifurcated hydrogen
bonds. A direct measure for the frequency of such arrangements which support the
mobility is also the probability of occurrence of five-bonded water molecules.

Finally, these observations lead to a very simple explanation for the occurrence
of hydrophobic hydration: the presence of a nonpolar solute produces a decrease in
local water density. The water molecules adopt an orientation, which is already
prevalent in pure water as cavity structure and which allows the formation of four
hydrogen bonds; but there is no space for a fifth bonding possibility. When the
‘catalytic’ action of this fifth bond is missing the mobility of the water molecules is
reduced, leading also to an increased local order. Both effects had been observed in
former Mp simulations (Geiger et al 1979a), in accord with experimental findings.
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