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Molecular dynamics simulation | NMR quadrupole relaxation

An aqueous solution of '*!Xe at room temperaturce has been modeled in a molccular
dynamics simulation of ST2 water with a Lennard-Jonces solute. The electric field gradient
fluctuation of purely electrostatic origin at the solute nucleus is investigated. Factors of
static and dynamic screening are determined. The electric field gradient time correlation
function docs not decay monoexponentially, but shows contributions from various time
domains in the range of 0.01 to 4.0 ps. The integrated correlation time is about 0.5 ps.
The fluctuations are mainly caused by the molecules in the first hydration shell of the
solute. Theinitial fast decay of the time correlation function is duc to hindered translations
and rotations as well as lo a cooperative symmetry conservation of the hydration shell.
The calculated relaxation rate is in good agreement with the experimental value.

Es wurde cine wiiBrige ! ! Xe-Losung bei Zimmertemperatur mittels einer molekulardyna-
mischen Simulationsrechnung untersucht und die Fluktuation des clektrischen Feldgra-
dienten am Ort des gelSsten Teilchens analysiert. Statische und dynamische Abschwii-
chungsfaktoren wurden berechnet. Die Zeitkorrelationsfunktion des Feldgradienten
zerfallt stark nichtexponenticll und enthilt Beitrage unterschiedlicher Zeitskalen zwischen
0.01 und 4,0 ps. Dic integricrte Korrelationszeit ergibt sich zu etwa 0,5 ps. Die Fluktuatio-
nen werden hauptsichlich durch die Molekiile der ersten Hydrathiille verursacht. Der
schnelle Zerfall der Zeitkorrelationsfunktion bei kurzen Zeiten ergibt sich aus behinderten
Translations- und Rotationsbewegungen wie auch durch kooperative Symmetricerhal-
tung in der Hydrathiille. Die berechnete Relaxationsrate stimmt mit den experimenicllen
Werten gut iiberein,

1. Introduction

Measurements of the nuclear magnetic relaxation of nuclei with spin quan-
tum number 7 > 1/2 are widely employed for the investigation of the struc-
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ture and microdynamical behaviour of liquids. The relaxation of most of
these nuclei is dominated by quadrupolar coupling, i.e. the interaction
between the nuclear electric quadrupole moment and the fluctuating electric
field gradient (efg) effective at the nuclear site [1]. The efg is due to the
complete intra- and intermolecular charge distribution in the surroundings
of the nucleus. In the case of atoms or monoatomic ions in solution the
field gradient is of inrermolecular origin and the fluctuations are caused by
thermal motion of the solvent molecules.

There are two mechanisms for the energetic coupling between solute
nucleus and solvent. On the one hand, there is a direct electrostatic interac-
tion between solvent charges and the nuclear quadrupole moment; on the
other hand, the field gradient can also be due to distortions of the symmetry
of the electron cloud around the nucleus, which are induced, for example,
by collisions with solvent molecules. Various models which attempt to
elaborate on these mechanisms have been proposed in the last two and a
half decades. Electronic distortion effects have been considered by Deverell
[2] and Mishustin and Kessler [3]. The electrostatic theories can be divided
into explicitly molecular models and continuum models. The molecular
electrostatic approach is due to Hertz [4—6] and Valiev [7, 8] and has
recently been reformulated by Versmold [9] on the basis of rigorous tensor
algebra. A more graphical model has also been proposed by Friedman
[10]). An electrostatic continuum model has been developed by Hynes and
Wolynes [11] and was generalized recently by Stiles and Byrnes [12). The
electrostatic theories also account for electronic effects, but only in the
sense of a constant electronic polarization, i.e. an overall multiplication of
the field gradient with the so-called Sternheimer, or antishielding, factor
(13, 14).

Out of these models, especially the relaxation theory of Hertz has been
utilized very successfully to reproduce the experimental relaxation rates of
many nuclei in many solvents [6]. The essential quantities, which determine
the quadrupolar relaxation rate, are the mean square amplitude V'Z and
the correlation time 7. of the efg fluctuation. In the extreme narrowing case
the corresponding relation is:
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In several cases it has been possible to perform relaxation time measure-
ments in so-called non-extreme narrowing situations [15, 16], where it
is possible to determine these two quantities separately. The observed
magnitude of 7. is compatible with the electrostatic, but nor with the
electronic theories [16). Electronic relaxation mechanisms may be impor-
tant for special systems, like liquid noble gases, but for polar solvents the
electrostatic approach is most promising.
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Even the latest electrostatic theories [9, 12] leave open many questions
about the details of the relaxation process. Computer simulations offer the
possibility to observe and analyze model systems directly on a molecular
level. Several Monte Carlo (MC) [17—19] and molecular dynamics (MD)
[20 —22] simulations of this kind have been performed recently. While the
MC method yields only the mean square fluctuation VZ, with MD
simulations it is possible to determine the correlation time 7. as well. The
latter method thus permits, in principle, an “ab initio” calculation of the

relaxation rate 1/7;.

We report here a molecular dynamics simulation of an aqueous solution
of 13'Xe. Natural Xenon contains this isotope with an abundance of 21%.
131Xe has a spin quantum number of 7= 3/2 and hence a nuclear electric
quadrupole moment. Measurements of the relaxation rate of this nucleus
in various solvents, including water, have been published recently [23—
25). The “Xenon in water” system is of special interest in the context
of hydrophobic hydration [26—29]. In living systems Xenon acts as an
anesthetic and NMR spectroscopy of this element can be used as a probe
in the investigation of membranes, protein suspensions etc. [29]. Our simu-
lated system consists of 215 ST2 water molecules [30] and a Xenon atom,
which interacts with the solvent via a Lennard-Jones pair potential. It has
been shown repeatedly that the hydration of nonpolar solutes can be
simulated successfully with this model [28, 31 — 33]. The simulation extends
over 39 ps. We calculate the efg tensor at the solute site that is due to the
partial charges of all ST2 molecules. The mean tensor squared yields V2,
and from the corresponding time correlation function (tcf) we obtain t..
When calculating the relaxation rate 1/T,, we correct for the electronic
polarization effects by multiplication with a Sternheimer factor. Thus we
differ from the recent MD simulation of Engstrém ef al. [22]. These authors
have investigated the efg fluctuation in aqueous ionic solutions; however,
they determined the field gradient from parameterized ab initio calcu-
lations. In this strict quantum mechanical approach electronic and electro-
static contributions are treated in a unified, but also indistinguishable,
manner. From our procedure, however, we expect an explicit answer about
the applicability of electrostatic approaches. By calculating a variety of
time averages and tcfs we attempt to get a more detailed insight into the
molecular motions governing the relaxation mechanism.

We start with a description of the simulated system and the efg calcu-
lations (Secs. 2 and 3). The results are presented and discussed in Sec. 4.
We focus on the statics and dynamics of the field gradient fluctuation and
compare the computed relaxation rate with experimental values. We also
investigate the underlying molecular motions and look at the field gradient
fluctuation in the V-structure of water. In the final Sec. 5 the simulation
results are compared with the predictions of various relaxation models.
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2. Simulation outline

Our system setup essentially corresponds to the previous study {28]. 215
ST2 water molecules [30] and a Lennard-Jones sphere of mass 131 amu are
confined to a cubic box under standard toroidal boundary conditions. The
density is 1.03 g cm ~ 2. The Egs. of motion are integrated in the Verlet form
[34] with a time step of 1.22 - 107 !5 5, using the constrained algorithm
SHAKE for the water molecules [35]. The water-water interactions are
calculated with a spherical cut-off of 7.8 A, using an instantaneous reaction
field and a tapering function smoothing the discontinuity at the cut-off
[36]). Due to the use of the latter, excellent energy conservation without any
need for velocity rescaling is achieved. The Lennard-Jones parameters for
the solute-water interaction (which is calculated in the minimum image
convention) are derived from experimental values for the Xe-Xe-interaction
[37] and the corresponding ST2 parameters. By using the arithmetic and
geometric mean, one obtains ¢ = 3.7 A and £ = 0.18 kcal/mol, respectively.

After introduction of the solute into an equilibrated water configu-
ration, a simulation of 32000 time steps was performed on a VAX-11/
780 with an attached FPS-164 processor. For the last 18000 time steps,
equivalent to 22 ps, configurations were recorded and analyzed. The mean
kinetic temperature is 295 K. The corresponding value for the weakly
interacting dissolved particle is 284 K and hence close to the solvent tem-
perature.

3. Computation of electric field gradients

Each of the 215 ST2 molecules gives rise to an efg tensor V' at the solute
site. The cartesian components are
. az Ui
Vig=—, i=1...215; afi=xy,: 2
= oacp’ | 0= xpz2 @
with U being the Coulomb potential produced by the four partial charges
¢’ of the ST2 model:

¢i=+0235Te, j=1...4.

We note that these charges have been used as pure fitting parameters in the
formulation of the ST2 model [30]. Therefore the ST2 dipolc moment is
2.35 Debye, larger than the dipole moment of the isolated water molecule,
but close to the mean dipole moment in the liquid [38].

By summing over all molecules in the simulation cell, we obtain the
total field gradient tensor

N
V=) Vi, N=215. 3)

i=1
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The ensemble averaged tcf of this quantity can be calculated from its
cartesian components

(V) V(D)) = X (Vap0) - Viogl1)) . )]
a.fp

Nuclear quadrupolar relaxation is determined by the spectral density of
this tcf [1]. If the Larmor frequency of the NMR experiment is small
compared to the characteristic frequency of the efg fluctuations, i.e. in the
extreme narrowing case, only the zero frequency value of the spectral
density enters and Eq. (1) is obtained [39] with the correlation time

e [ YOV )

o <V(O):V(0)>

For the mean square fluctuation amplitude, given by the value of the tcf
at time zero, we use the notation of Friedman [10):

- 2 12
Ve: = <§V(0)2V(0)> (6)

which yields

. 2
V.= <q2(1 + '—;—)) ™

if the field gradient tensor is evaluated in a molecule fixed principle axes
system [40]. g denotes the element of the diagonalized tensor with the largest
absolute value and n is an asymmetry parameter
V;_,,— V;w

V..

®)

n

with|q = Vil 2|V, 2 Vi

We note that we compute the tcf (4) and the mean square fluctuation
(6) by strictly accounting for all components of the tensor as shown on the
right hand side of Eq. (4). This is superior to the method of Engstrém et
al. who confined themselves to only one [17—19] or three [22] of the
diagonal components in the laboratory system. Because of the symmetry
and vanishing trace of the efg tensor, statistical deviations in single
components of the tensor cancel partly if summed up according to Eq. (4)
[21]. Thus qur approach yields higher accuracy for the mean square fluc-
tuation V.. as well as for the correlation time ..

Inserting sum (3) into Eq. (4) the tcf of the total ficld gradient can be
decomposed into sums over self- and cross-correlation functions of single
particle field gradients

CV0):V(1)) = XAVH0): V) + LY. CVI0): V). 9
i

i*j
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In an analogous fashion to Egs. (4) and (6), one defines the tcf

CV(0): V(1)) = X(VI(0): Vi) (10a)

with the corresponding correlation time

T LYO©): V@)
= 11
=] o v an
and the mean fluctuation amplitude
— 2 172
ViD= <? Vo) V“’(O)> (12)

to characterize the single particle field gradient. In Eq. (12) the field gradient
contribution of each single molecule is squared before the sum is evaluated
and hence mutual quenching of the sign affected single particle contri-
butions does not occur. Therefore, a comparison of the numerical results
of (6) and (12) yields information about the static many particle correlations
(static screening factor). Analogously, a dynamic screening factor can be
defined using the correlation times (5) and (11). The difference between the
total field gradient tcf (9) and the self correlation function (10a) yields the
cross correlation function

VI0): V(1)) = Y'Y K Vi(0): Vi(1)) . (10b)

£ 5]

Note that the tcfs (10a) and (10b), which we denote self- and cross-
correlation functions of single particle field gradients, are in fact two- and
three-particle correlation functions [9] because of the dependence on the
solute position.

Care has to be taken in the computation of the single particle tcf (10a)
because of the periodic boundary conditions involved in the simulation
technique. To use the minimum image (MI) shifted positions of the solvent
molecules with respect to the solute at any instant — which is acceptable
for the computation of the total field gradient (4) — would mean to include
trajectories which contain “jumps” from one box side to the other if an MI
boundary is crossed by a solvent molecule. A proper remedy is the repli-
cation of the original box, so that the particle trajectories no longer extend
on the surface of a four-dimensional torus, but in principle in the infinite
(but periocdic) three-dimensional space. This is achieved by tracing the
particle trajectories in time without applying MI-shifts. The tcf (10a) has
been calculated by this method, once using only the trajectories of the
molecules in the original box, and alternatively applying the same procedure
to the molecules of a new system of 3- 3 - 3 =27 original boxes. We find
good agreement between the results of these two approaches. However,
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the first discussed naive approach, including MI-shifts, yields markedly
different single particle tcfs.

4. Results

From the amplitude (Sec.4.1) and the correlation time (Sec.4.2) of the efg
fluctuation, we get the relaxation rate (Sec.4.3), which is compared with
experimental values. In Secs. 4.4, 4.5, and 4.6 we exploit the typical advan-
tage of computer experiments to be able to analyze molecular processes in
detail.

4.1. Mean square fluctuation of the electric field gradient

By mcludmg all 215 molccules around the solute the mean square fluctua-
tion 7..° (6) comes out to (0.55 + 0.07) - 10%® V2/m* [41]. Fig. 1 shows the
convergence of this value when more and more neighbors are included

300. 00

240. 00

[‘*1037
180. 00

120.00

V2m

60. 00

. 00

.00 15. 00 30. 60 45.00 60. 00

Number of motecules

Fig. 1. Mean square fluctuation of the efg if an increasing number of nearest ncighbors
is included in the efg evaluation. Squaring after (lower curve, usual definition) or before
(upper curve, screening eliminated) summation of the single particle contributions.
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Fig. 2. Quotient of quantitics from Fig. 1.

into spherical shells around the solute (lower line). The curve exhibits a
maximum at six neighbors, equivalent to 4 A, which coincides with the first
maximum in the computed Xenon-oxygen radial pair correlation function
[28]. A fairly close approach to the limiting valuc is reached at about 20
neighbors which compares with the first minimum in the pair correlation
function at 5.5 A or 21.5 neighbors. Consequently, the overwhelming part
of the cfg at the solute nucleus can be assigned to the molecules in the first
hydration shell.

Fig. 1 demonstratcs also the convergence behavior of the quantity (12)
where the order of summing and squaring has been exchanged and hence the
mutual quenching of contributions from different molecules is eliminated
(upper line). The converged value including all molecules comes out to
(V2 =2.54 - 10%° V2m~4. For comparison, the average mean square
field gradient produced by the closest water molecule is 0.45 - 103° V2m ™4,

The quotient of both curves from Fig. 1 is a measure of the mutual
quenching of the efg due to many-particle correlations. This function which
displays “screening” in an integrated way is shown in Fig. 2. Up toabout ten
neighbors screening increases roughly linear with the number of molecules.
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Fig. 3. Distribution of components in the principal axes system of the efg tensor.

Beyond about 20 neighbors an asymptotic limit is approached quickly. The
limit value, which we denote as the static screening factor f.., coincides
with the square of the so-called polarization factor P [5, 13], which has
been discussed frequently [9, 11, 19]. We obtain f,, = 0.22 and hence P =
(fua)'/? =0.47.

By diagonalization of the efg tensor, three statistically equivalent tensor
components in the principle axes system are obtained. Their distribution
over the observed field gradient range is given in Fig. 3. Apart from the main
peak in the middle it shows another unexpected peak at a nonvanishing
field gradient, together with its symmetric counterpart. The mean square
fluctuation in the principle axes system may be characterized completely
by the two parameters g and 5 according to Eq. (7). We find {¢*) =0.49
- 10%% V2m~4, i.e. a value less than the actual mean square fluctuation
specified previously. Accordingly, the asymmetry parameter comes out to
a nonvanishing value of () = 0.60.
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Fig. 4. Normalized tcf for efg fluctuation in aqucous Xenon solution. Inset: Fit with sum
of three exponentials.

P, 00

4.2, Electric field gradient time correlation function

The obtained tcf (4) displayed in Fig. 4 shows the same overall pattern as
observed in the simulation of ions in water [22]. A very rapid initial decay
on a time scale of a fraction of a picosecond is followed by a slower decay
on a picosecond time scale. Careful inspection shows that at least three
time domains can be distinguished. A good fit involving three exponentials
with 7 = 0.01 ps (weight 0.45), 0.25 ps (weight 0.45) and 4.0 ps (weight 0.1)
is displayed in the inset of Fig. 4. For the present, we consider this fit as a
first unbiased attempt to quantify the decay of the field gradient tcf in a
phenomenological way. Later we will discuss the physical mechanisms that
can be associated with the time domains of the above shown fit.

The integral over the tcf up to infinity is the decisive dynamical quantity
in an NMR experiment in the extreme narrowing regime [Eqs.(1) and (5)].
By direct integration up to 3.9 ps and using the fit given above for the range
beyond, we find 1, = 0.54 ps. Another measure for the time evolution of



NMR Quadrupole Relaxation of Xenon-131 in Water 39

<eltlel0) >

Q
(=]
(=]
@©
el
[
w
el
Q
<
e
o
o~
o
. 00 0. 40~ 0.80 1.20 1.60
tips

Fig. 5. Reoricntational tcf for the principal axes (unit vectors) of the efg tensor.

the field gradient tensor is the reorientational behavior of the principal axes
[see Eqgs.(7) and (8)]. The corresponding tcf is shown in Fig. 5 and again
an initial rapid decay in a fraction of a picosecond is observed. Obviously,
the principal axes system changes drastically in conncction with small
lateral displacements of hydration shell water molecules.

4.3. Relaxation rate

With the two quantities 7..° and 1, at hand we can calculate the NMR
relaxation rate which is given by

1 _ 3 2/+3 (eQ(1+~,»=.(,))2T,_2t
T, 40 PQI-1) h =

(13)

The spin quantum number for '3!'Xe is / = 3/2 and for the nuclear electric
quadrupole moment a value of @ = —0.12 - 10~ 2% cm ™2 is generally used,
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the uncertainty specified with 3 10% [42]. The Sternheimer factor (1 + y,,)
is not known accurately as is common for this quantity. Tentatively, we
make use of two values given recently [43] and thus obtain the following
relaxation rates:

1/Ty =191 s~ with (1 + y,) = 139 [43a]
1/T, =246 s~ ! with (1 + y,,) = 158 [43b] .

Stengle et al. [25] determined the relaxation rate of '*'Xe in H,0O and in
D,0 at 25°C from line width measurements to be 1/7, =179s™! and
251571, respectively. Mazitov et al. [24] report values of 147 + 7 and
180 + 957!, respectively. The measurements had been carried out at the
low concentrations given by the saturation solubility of Xenon at the
applied moderate pressures. No concentration dependence could be ob-
served [25].

The proximity to our computed relaxation rates is remarkable in view
of the simplifications which have entered into the model and the uncertainty
in the numerical values of the employed constants.

4.4, Single particle electric field gradient

The self- and cross-correlation functions (10a) and (10b) of the single
particle field gradients are displayed in Fig. 6, along with the corresponding
tef for the total field gradient discussed previously (lowest line). Whereas the
normalized self and cross tcf show a similar behavior, a distinct difference to
the total field gradient tcf is visible. It is important to realize that the
zero time values of these three tcfs are very different. The mean square
fluctuation values, given in section 4.1. are equivalent to

(V(0):V(0)> = 0.83 - 10%° VZ/m*
CVO(0): VIY0)) = 3.81 - 10%° VZ/m*

and hence yield a negative sign of the cross-tcfs (notice the factor 3/2):
{VI(0): V3(0)> = —2.98 V3 /m* .

This is another manifestation of strong efg quenching. It is clearly the near
cancellation between the oppositely signed self- and cross-tcfs that leads to
the marked short time decay of the total efg correlation function.

For the single particle self-tcf we estimate the correlation time 7', i.e.
the integral up to infinity, to be about 3.4 ps. Together with the total
field gradient correlation time of 0.54 ps given above, we may calculate a
dynamic screening factor by defining f,,, = 1./t{" and obtain fy,, = 0.16.

Keyes and Kivelson [44] argued that in ordinary liquids the correlation
time 7., of a collective orientation dependent variable can be related to the
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Fig, 6. Solid line and solid line with circles: Normalized single particle tefs for efg auto-
correlations and efg cross-correlations, respectively. Lowest line: Normalized tef of total
cfg tensor as in Fig. 4.

correlation time .., Which describes the fluctuation of the individual
constituents, by

Teol = gtsing . (14)

J2

£, and j, are static and dynamic correlation factors, respectively, and g, is
in our case identical with f;,,,. Usually it is assumed that j, = 1 and therefore
Jayn = fuar, Which is in excellent accordance with our observations. However,
it should be kept in mind that the derivation of Keyes and Kivelson refers
to exponentially decaying single particle and collective tcfs, which are
clearly not found in our simulation. Our results also show that for rather
long times the single particle and collective tcfs decay with about equal time
constants: Teg X Ting:

4.5. Molecular motions

Even within an entirely electrostatic framework it is not at all clear what
kinds of molecular motion are predominantly responsible for the efg fluc-
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tuation. We try to address this question by calculating tcfs for the transia-
tional and rotational motion of both the solute and the solvent molecules.
Since it has been shown that the region beyond the first hydration shell
does not significantly contribute to the field gradient, only the molecules
of the first hydration shell need to be considered. The residence time of the
molecules within the shell then specifies an upper limit for the time scale
of possibly contributing motions.

We compute single particle tcfs of the hydration shell molecules by
applying a procedure proposed by Impey et al. [45] and average only over
those particles, which satisfy the following requirements: The particle has
to be inside the first hydration shell at both times ¢ = ¢ and ¢ = ¢’ + Ar and
may not have left the shell for any continuous period longer than ¢* in the
meantime (the reference time ¢ runs over the whole analysis interval).
With the introduction of the parameter ¢* the problem arising from those
molecules which temporarily leave the first hydration shell can be handled
in a well defined manner. The limiting values for ¢* are the time resolution
of the analyzed configurations on the one hand and the total time of the
analyzed simulation interval on the other hand. In our case these limits are
0.01 ps and 22 ps, respectively; and the first hydration shell extends up to
5.5 A with a mean of 21.5 solvent molecules in it. Within the 22 ps analysis
interval 58 of the total of 215 water molecules reside at one time or another
within this shell.

For the simplest single particle property “residence/nonresidence”, de-
scribed by a function f(¢t) =1 or 0, the tcfs of Fig. 7 are obtained with the
dashed lines referring to the limiting values for r*. Impey et al. [45] used
exclusively * =2 ps (solid line). It can be seen that the residence tcf for
this value is very close to the tcf obtained with the upper limit value.
Integrating the solid line up to infinity with an appropriate exponential
continuation yields a lifetime for the solvent molecules in the first hydration
shell of about 8.2 ps. This value is of the same order of magnitude or larger
than most of the correlation times which are typically used in the description
of the microdynamics in water and aqueous solutions. In particular the
Debye correlation time 7, which is for pure water at room temperature
about 8 ps, is still within that range. (The situation is different for structure
breaking ions which have considerably smaller hydration shell molecule
lifetimes.)

The outlined method can now be applied to the computation of other
single particle tcfs of hydration shell molecules. We present results for
* = 2 ps but the tcfs discussed below are quite insensitive to any 7* value.
Fig. 8 displays in the inset the tcf of the relative velocity between the center
of mass of the hydration shell water molecules and the Xenon atom.
This figure also shows the power spectrum, which is obtained by Fourier
transformation over the time range shown in the inset. We discuss the
position of various peaks in terms of characteristic fluctuation times t =
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Fig. 7. Normalized residence Icf of water molecules in first hydration shell of Xenon.
Parameter ¢* refers to maximum time interval molecules are allowed to lcave hydration
shell without being neglected.

2 nfw. Naturally the relative motion must reflect contributions from both
partners. The two peaks at 7 = 0.6 ps and 0.15 ps are the dominant peaks
of the single particle velocity tcf of the water molecules [30]). These time
domains are usually assigned to two specific kinds of hindered translation
of the water molecules. The high frequency motion with t=0.15ps is
assumed to be due to intermolecular vibrations between hydrogen bonded
molecules. The low frequency motion with 7=0.6 ps is assigned to the
movement of the reference particle within the “cage” formed by the sur-
rounding molecules. In another picture, O—O— O bond angle oscillations
are assumed Lo be responsible [46).

The highest peak at 1.5 ps stems from the Xenon motion: due to its
relatively slow motion in a wide cage, the power spectrum consists of one
broad asymmetric band, positioned at the corresponding frequency (not
shown here). As we will discuss later, the influence of this very pronounced
motional contribution clearly shows up in the single particle field gradient
tcf. We note here that the discussed fluctuation times belong to an inter-
mediate scale if we consider the time scale of the field gradient tcf (Fig. 4).
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Fig. 8. Normalized tcf (inset) and corresponding power spectrum (main diagram) for
relative velocity between center of mass of water molecules and Xenon nucleus.

Next we look at the translational and rotational motion directly (Fig. 9).
According to the symmetry of the system, the translational motion is
decomposed into a “lateral” and a radial component. The first part refers
to the surface of spheres laid around the solute and is described by the
reorientation of the connecting vector between the solute and the center of
mass of the solvent molecule. For ideally radially oriented point dipoles
the field gradient tcf refers to the decay of the second Legendre polynomial
of this vector [4, 9] (plain curve of Fig. 9a). With respect to the radial
component of the translational motion, the inverse of the fourth power of
the radial distance enters into the field gradient in the point dipole picture.
No hydration shell definition is required and the averaging can be
performed over all molecule trajectories of the system (full curve with
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Fig. 9. Upper diagram, solid line; Reoricntational tef for sccond Legendre polynomial
of the solvent center of mass to Xcnon connecting vector (“latcral” translation of hy-
dration shell molecules). Solid line within triangles: Translational tcf for radial motion
of solvent center of mass relative to Xenon nucleus. — Lower diagram, solid line:
Reorientational tef for first Legendre polynomial of solvent dipole vectors in first hy-
dration shell. Dashed line: Same tcf for bulk water molecules.

triangles). To calculate the influence of the pure rotation of the solvent
molecules, the point dipole approximation is used again. It has been shown
that the appropriate tcf refers to the decay of the first Legendre polynomial
of the electric dipole vector [4] (plain curve of Fig. 9b). For the purpose of
comparison, the corresponding correlation function for bulk water is also
displayed (dashed curve). A pronounced structure making effect of the
solute is clearly visible.

Assuming independence of the investigated motions and using the point
dipole approximation, we can calculate the single particle field gradient tcf
by multiplying the three translational and rotational tcfs from Fig. 9. The
result is shown in Fig. 10 (plain curve). The dashed curve is the actual single
particle field gradient decay already shown in Fig. 6. The full curve with
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Fig. 10, Solid line: Normalized tcf obtained from multiplication of the three tcfs from
Fig. 9 that refer to lateral displacement, radial translation, and internal rotation of
hydration shell molecules. Dashed line: Single particle icf for cfg auto-correlations as in
Fig. 6. Solid line with crosses: Single particle tcf for ¢fg auto-correlations if only point
dipolar part of ST2 charge distribution is considered.

the crosses is the computed single particle field gradient tcf if only the point
dipole part of the ST2 charge distribution, positioned at the center-of-mass,
contributes to the ficld gradient. The agreement of the three curves is
satisfactory. The slight shift downwards while proceeding from the point
dipole field gradient to the actual one is understandable. For higher
multipole moments the internal rotation is described by Legendre poly-
nomials which are of higher order than unity and hence decrease faster.
Concerning Figs. 9 and 10, the direct influence of two distinct types of
motion on the single particle field gradient tef can be conceived immedi-
ately. Hindered rotations, the so-called “librations” of the water molecules,
lead to the rapid initial decay in Fig. 9b, which one finds likewise in Fig. 10.
The bump-like feature of the field gradient tcf between 1.0 and 2.5 ps also
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shows up in the distance tcf of Fig. 9a and becomes even more prominent,
if one calculates the correlation function of the fluctuations around the
average Xenon-water distance for every water molecule trajectory (not
shown). An obvious explanation for the occurrence of this bump is the
oscillation of the solute within its hydration cage, which leads to the
prominent peak at t = 1.5 ps in the power spectrum Fig. 8.

4.6. Electric field gradient for the water V-structure

An interesting point of view of the microdynamics of water and aqueous
solutions has been provided by Eisenberg and Kauzmann [47], who dis-
tinguished between the I-, V- and D-structures of liquid water, where the
initials stand for “instantancous”, “vibrational” and “diffusional”. The
I-structure corresponds to the configurations obtained directly from a
molecular dynamics simulation. The V-structure disregards local trans-
lation and rotational vibrations and is the structure actually probed with
many experimental methods, ¢.g. IR spectroscopy. Hirata and Rossky
introduced a realization of the V-structure for ST2 water into computer
simulation [48). Technically, all molecule positions are averaged over a
certain number of configurations in the six-dimensional space formed by
the cartesian center of mass coordinates and three Euler angles. Application
of this method to the problem of the efg fluctuation is of interest as certain
parts of the microdynamical motion may be suppressed.

In Fig. 112 we display tcfs for the total and single particle field gradient
which are obtained with two choices of the averaging time. The solid lines
refer to the I-structure and hence no averaging, the widely dashed lines in
the middle refer to an averaging time of T =0.1 ps and the upper dashed
lines to T = 0.2 ps.

With the smaller averaging time the librations are suppressed and the
rapid initial decay of both kinds of tcfs disappears. With the larger
averaging time the broad translational high frequency band of Fig. 8 is also
eliminated and the tcfs move further upwards. The integral up to infinity
of the total field gradient tcf is roughly doubled at this point. Vice versa,
we can conclude that the inclusion of hindered rotations and of the high
frequency part of the hindered translations associated with hydrogen bond
stretching reduces the correlation time by a factor of two.

The mean square fluctuations of the total field gradient are reduced to
79% with 7 = 0.1 ps and 61% withT = 0.2 ps, respectively, of the I-structure
value. This is understandable as we observe a continuous narrowing of the
water-Xenon radial pair correlation functions while proceeding from the I-
structure to the V-structures. Obviously about 40% of the mean square
fluctuation is due to the temporal approach of charge centers towards the
solute nucleus during the vibrational periods of hindered rotations and fast
hindered translations.
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Fig. 11, a) Normalized tcfs of total efg tensor (three lower lines) and single particle efg
tensor (auto-correlations, three upper lines) for Xenon in I-structure of water (solid lines),
in V-structure with timc averaging over T = 0.1 ps (widely dashed lines), or in V-structure
with time averaging over T = 0.2 ps (narrowly dashed lincs).

Fig. 11b is the analog of Fig. 6 for a V-structure that is obtained with
the extreme averaging interval of T =1 ps. Referring to our discussion in
the previous section, all hindered translational and rotational motions of
the water molecules should be averaged out under these conditions; but
nevertheless the relative difference between the normalized tcfs persists.

This means that the presence of hindered motions is not really necessary
to obtain the dynamic screening or “acceleration” effect that characterizes
the fluctuation of the total field gradient relative to the single particle
fluctuation. The retarded decay of the cross correlations evidently reflects
a partial conservation of the hydration shell symmetry. We note that not
only hindered motion but also the free solvent rotation does not effectively
disrupt the overall symmetry pattern of the hydration shell. Consequently,
a pronounced dynamic screening has to be expected. Only the much slower
unhindered translational motion gives rise to a net degradation of the
hydration shell symmetry.
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Fig. 11. b) Normalized tcfs for fluctuation of total cfg tensor (dashed line) and single
particle auto- and cross-correlations (solid line and solid line with circles respectively) in
the V-structure of water with time averaging over 7=1 ps.

5. Discussion

In Sec. 4.3 it was demonstrated that the experimentally measured relaxation
rate of '3'Xe in water can be reproduced successfully by a simulation that
is based on an entirely electrostatic approach. Considering the wealth of
structural and thermodynamical simulation data that have elsewhere been
compared with experimental evidence [28], this agreement is not likely to
be fortuitous. It is now of interest to inquire whether any of the known
electrostatic relaxation theories can account for the simulation results. This
question is especially intriguing as we are able to compare separately the
mean square amplitude and the correlation time of the efg fluctuation.
The results of such a comparison, carried out with formulas and pa-
rameters as given in the Appendix, are collected in Table 1. We consider the
FRD (“fully random distribution™) and NOS (“non-oriented solvation™)
versions of Hertz's microscopic electrostatic theory [6], the continuum
theory of Hynes and Wolynes [11], and the generalized continuum theory
of Stiles and Byrnes [12]). For completeness, we note that we do not discuss
the theories of Friedman [10] and Valiev [8] because they are rather specific
for the solvation structure of charged (ionic) solutes. The same restriction
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Table 1. NMR relaxation of '*'Xe in water from simulation, electrostatic theorics, and
experiment.

Simula-  Hertz theory Continuum thecory Experi-
tion Ref. [4—-6) Ref. (11, 12] ment
Ref. [25]
FRD NOS Simple Gencera-
lized
—2
;,V"} _ 055 0.36 0.84 0.12 0.04
103 Vm-
e 0.54 9 0.12
ps
T, 246 2660 6310 12 4 179

s-l

applies to the FOS (“fully oriented solvation™) version of the theory of
Hertz [6). Another theory by Valiev [7), after all, is largely comparable with
Hertz’s theory and is not considered here either.

" Inspection of Table 1 suggests that the Hertz theory gives roughly the
right mean square amplitude of the efg fluctuation and that the continuum
theory is better in the prediction of the fluctuation dynamics. The relaxation
rate, however, is ofl by an order of magnitude in either case. The predictions
would be better if parameters are chosen in ways similar to those in previous
presentations of the models. Thus, the Hertz theory is usually implemented
with the gas phase value for the water dipole moment (1.84 D) whereas we
have here chosen the dipole moment of the ST2 model (2.35 D) which
should actually be close to the effective value in the condensed phase [38].
Furthermore, the relaxation rates of the Hertz theory are usually calculated
with a correlation time of 7. = 2.5 ps, which is the correlation time for the
intramolecular proton-proton relaxation of the water molecule [5]. Our
value of t,=9 ps, the Debye correlation time 1, for the solvation shell
molecules, refers to the internal solvent rotation as the relevant dynamical
process in the original formulation of the theory (decay of first order
Legendre polynomials [4]). It is also possible to include a translational
contribution in the sense of [5]

r_rt .1 (15)

. 1, t*
where t, is again the Debye corrclation time and t* refers to the trans-
lational motion of molecules on the periphery of shells laid around the
solute (“lateral displacement”). From our simulation (Fig. 9) we can esti-
mate t* = 20 ps and hence obtain a total correlation time . of about 6 ps
and a reduction of the relaxation rate by about 30%. Finally, it should be
mentioned that the continuum theory prediction of the relaxation rate is
much better if the bare atom radius is used to characterize the penetration
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range of the dielectric continuum [11, 12]. Naturally, only a rough upper
estimate for the relaxation rate can be calculated in this way.

Surprisingly, the polarization factor determined in the simulation (P =
0.47) almost agrees with the value of P =0.41 that is calculated with the
simple continuum formula of Cohen and Reif [13]:

3+250
580 )

P= (16)
It has been shown, however, that the derivation of this formula does not
really apply to the kinds of systems considered here [19]. The enormous
difficulties of a proper analytical calculation of the polarization factor have
been emphasized, and quick progress in this endeavor is not expected [11].
Hertz sets P =0.5 in an ad hoc fashion which thus appears to be a good
choice [5].

Dynamic screening effects are neglected in the microscopic electrostatic
theory by assuming identical temporal decay of the two and three particle
correlations [5]. This assumption does not hold true (Fig. 6). Although the
difference in the correlation times is not very large, the decay of the summed
field gradient tensor is strongly affected because of the opposite signh of
auto and cross correlations. The continuum theory, on the other hand,
implicitly accounts for static and dynamic screening within its very formal-
ism [11, 12], but both effects are obviously overemphasized (Table 1).
Another lack of all proposed theories is the complete neglect of hindered
motions. From the results presented above it is sufficiently clear that
some account for the oscillatory microdynamics is essential for a proper
understanding of the efg fluctuation.

In conclusion, molecular dynamics simulation has shown that the NMR
quadrupole relaxation of '3!Xe in water can be adequately described with
a model of simple electrostatic effects. A precise microdynamical under-
standing of the field gradient fluctuation is now beginning to emerge. Most
important, our analysis elucidates the intricate nature of static and dynamic
screening effects. Such effects were not yet considered consistently in the
pioneering microscopic theory of Hertz [4, 5] and appear to be substantially
overestimated in the electrostatic continuum theory [11, 12]. Recently,
Versmold [9] was able to derive some important functional properties of the
field gradient tcf for certain idealized solvation structures. A comprehensive
reformulation of the microscopic electrostatic theory in the spirit of such
a rigorous treatment appears to be called for.
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Appendix

For clearness, we subsequently give the explicit formulas and the numerical values used
in the preparation of Table 1.

Hertz FRD model [6]
2
V,,2= “”“'pz H (A1)
rs 4z,
T.=1;. (A2)

Hertz NOS model [6], including FRD contribution
from molecules outside of first hydration shell

2
17?,’=(2°z"'+ 16,’“)1’2( L ) : (A3)
r: r; 4 ney

Correlation time as Eq. (A 2).

Continuum model {11, 12]

——2 200kT & —&)

Ve = A4
= @ Aree(2 + 302+ 380) (A4)
_ 243 (AS)

Ce=———m—FT7T1.
‘T243L !

Generalized continuum model [12]

The mean square fluctuation from the simple continuum model, Eq. (A4), has to be
multiplied with the factor ‘

1+7+%71
(1_ 9 7 1 ) (A6)
22 —_3 R
I+7+20v +60y +607
where
a ’
I “e

Correlation times as Eq. (A5).

From the set up of our system, we have automatically for the solvent concentration
¢=0.0334 A3, for the solvent dipole moment yx = 2.353 D, and for the high frequency
permittivity &2 = 1 (non-polarizable water model). From the simulation, we find for the
solvent temperature 7= 295 K, for the polarization factor P = 0.47, for the static permil-
tivity €2 = 123 (scc Ref. [49] for appropriate calculation under reaction ficld conditions),
for the rotational correlation time of the first shell molecules 1, = 9 ps, and for the self
diffusion cocfficient D =23 - 1073 em? s~ [28). The radii ao, ro. 7, and r; arc not
unambiguously defined, but the following choices appear to be reasonable: ao = 3.3 A
from the first passage through g{r) =1.0 of the solute-ST2 charge center radial pair
correlation functions, £ = 3.5 A from the first passage through g(r) = 1.0 of the solute-
oxygen pair correlation function, r, = 3.95 A and r, = 5.5 A from thc first maximum and
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first minimum, respectively, of the latter. The number of first shell molecules is n, =
21.5.The relaxation rates in Table 1 arc calculated with the nuclear constants f = 3/2,
0=-0.12-10"2*cm?[42], and (1 + y,,) = 158 [43b).
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