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Invariants of Spherical Harmonics as Order Parameters 
in Liquids 

Andras Baranyai, Alfonz Geiger,t Philip R. Gartrell-Mills,$ Karl Heinzinger,* 
Robert McGreevy,$ Glibor Palinkas7 and Imre Ruff* 

Laboratory of Theoretical Chemistry, Department of Chemistry, L. Eotvos University, 
Budapest, Mtizeum krt. 6-8, H-1088 Hungary 

The application of the second- and third-order invariants of the even-2 
spherical harmonics for the geometrical characterization of clusters in disor- 
dered systems is discussed. Their use as sensitive order parameters is useful 
in the geometrical analysis of computer-simulated configurations. It is shown 
that the second- and third-order invariants give information on the three- 
and four-body angular correlations, respectively. The values of the invariants 
calculated for a given configuration set depend on the number of particles 
and their neighbours considered, i e .  on the size of the statistical sample. A 
renormalization is suggested to eliminate this size effect. By choosing a 
suitable method of averaging the spherical harmonics, they can be made 
characteristic either of the angular correlations within individual clusters 
only or also of cross-correlations between a set of clusters. Thus they can 
be used for the detection of traces of longer-range crystalline structures. 

The first five even-! invariants have been calculated for configurations 
of liquid argon, molten alkali-metal halides, and pure water simulated by 
Monte Carlo or molecular-dynamic methods. The results indicate that the 
structure of the first coordination spheres in liquid argon are slightly distorted 
hexagonal close-packed clusters which have practically no angular correla- 
tion with one another. Nearest-neighbour angular correlations in sodium, 
potassium, rubidium and caesium chlorides correspond to more or less 
distorted face-centred cubic lattices, while LiI and LiCl resemble the wurtzite 
and sphalerite structure, respectively. In comparison with the above cases, 
water is disordered to the extent that even the distorted tetrahedral clusters 
are barely recognizable. Peculiarly distorted tetrahedra which are in a 
characteristic angular correlation with one another are stabilized by a 
decrease in the density of water. 

The use of pair correlation functions is the common way of characterizing the structure 
of highly disordered systems such as liquids. However, since these are averages of 
relative radial density distributions over all particles of a kind, taken as centres, and 
also averages over the polar angles in each of these coordinate systems, for the description 
of some physical properties the pair correlation functions are sometimes not sufficiently 
sensitive characteristics of the fluid structure. This may be the case, for example, in the 
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1336 Order Parameters in Liquids 

study of nucleation in phase transition, when the characteristic changes of the pair 
correlation function due to local order in some regions is smoothed out by the averaging 
over all particles. Similarly, the interpretation of physical processes, in which the 
asymmetry of the nearest neighbourhood is of crucial importance, would require informa- 
tion on the angular correlations averaged over in the purely distance-dependent pair 
correlation functions. 

The obstacles to obtaining more detailed information about the structure of fluids 
seem to be less in the theoretical than in the experimental approach. Revealing many- 
body and/or orientational correlations within and in between clusters of atoms or 
molecules in liquids would need an unconventional set-up in diffraction experiments 
as suggested recently by Ackerson et aZ.’ Their idea to evaluate the ‘apertured cross- 
correlation function’ by using two simultaneous detectors is very attractive, yet it has 
been utilized in real experiments only on colloid systems so far. l b  Application of the 
technique to liquids with correlation on atomic distance scales requires further develop- 
ment of synchrotron X-ray sources. 

Considering the theoretical approach, the adequate description of more complex 
correlations in computer-simulated sets of configurations seems promising. Extensive 
work has been carried out recently by Stillinger and  coworker^^-^ in search for the 
‘inherent liquid structure’. This can be obtained during molecular-dynamics simulations 
by quenching the system from time to time, suddenly diminishing the kinetic energy of 
the particles and positioning them in the local potential-energy minima. The pair 
correlation functions calculated for such quenched states reveal more of the fundamental 
liquid structure undisturbed by (strongly anharmonic) atomic vibrations. As a con- 
sequence of the sharpening of the peaks in these pair correlation functions, the onset 
of eventual nucleation in freezing or condensation is sensitively signalled by the appear- 
ance of small peaks characteristic of the new phase. 

m i l e  the ‘sensitization’ of the pair correlation function by quenching is a useful 
idea, it is more difficult to find an economic and relatively simple method to characterize 
local angular correlations. With this aim some papers have been published on the 
application of Dirichlet-Voronoi (DV) polyhedra’*-’’ (or, as they are sometimes called, 
Wigner-Seitz cells). 12-19 It is disappointing that the statistical geometrical information 
carried by them cannot be handled in a simple mathematical way; instead the distribution 
functions of their various features must be studied. Nevertheless, the DV polyhedra are 
unequivocal descriptions of the configurations, and their calculation does not require 
much computer time. 

Many-body correlation functions are often expanded into series using the complete 
orthogonal system of the spherical harmonics. This approach, while convenient in the 
theory of liquids based on integral equations, is not economic for the characterization 
of simulated configurations. Also, the higher-order terms of these series are themselves 
complicated, which does not facilitate the visualization of their physical meaning. 

Instead of the full expansion of the many-body correlation functions, Steinhardt et 
~ 1 . ~ ’  revived Landau’s suggestion21 of the use of the second- and third-order rotational 
invariants of even-Z spherical harmonics. In simplified form they can be applied to 
characterize only the angular correlations in a given (simulated) configuration of the 
system. They have proved to be sensitive order parameters for indicating phase transi- 
tions22 or distinguishing between geometrical alternatives of coordination spheres.2’ 
However, as with many fruitful ideas, their first applications were not executed in the 
most convenient way. 

In the next section we give a detailed survey of what is characterized by the invariants 
of spherical harmonics, both in the form suggested by Steinhardt et al. and in a modified 
version first used in ref. (23). Their applications to some fundamental types of liquids 
will be discussed in the subsequent sections, viz. for a Lennard-Jones liquid, for molten 
alkali-metal halides and for water. By comparing the results for these fluids, some 
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A. Baranyai et al. 1337 

conclusions can be obtained on the conditions regulating the sensitivity of the spherical- 
harmonic invariants to the geometrical structure of the system. 

Spherical Harmonics and their Rotational Invariants 

In common computer simulations the periodic boundary conditions are fulfilled by the 
translations of the cube containing the particles in all directions. Thus the configurations 
are given by the atomic coordinates in the reference frame of the simulation box. Since 
the comparison of local angular correlations in molecular clusters of some size can be 
studied only in local coordinate systems which, from the point of view of comparison, 
are properly rotated with respect to one another, an efficient mathematical method is 
required for either the 'alignment' of the clusters to be compared or for the characteriz- 
ation of the angular correlations by rotationally invariant parameters. 

The idea of Steinhardt et aL20 was to use the rotational invariants of the even-2 
spherical harmonics. These invariants are as follows: 

and 

m f m2+ m3=0  

respectively, where 

Qlm = ( y I m ( @ ,  4 ) )  (3) 
in which Ylm( 0, 4 )  are the spherical harmonics of the polar angles of a vector pointing 
from a particle considered to be central in a cluster to one of its neighbours within the 
cluster. In principle, a cluster may be any finite set of the particles comprising the 
liquid, In practice they can be limited only to a given number of nearest neighbours 
or to the neighbours within a pre-set cut-off sphere or to Voronoi neighbours." 

The mean value indicated in eqn (3) is taken over all such vectors in a system, 
irrespective of whether they belong to the same cluster or not. 

Just as the angular momentum quantum number, I, is a characteristic quantity of 
the 'shape' of an atomic orbital, the quantity QI is a rotationally invariant characteristic 
value of the shape of a given cluster (if the average is taken only over bonds within a 
given cluster) or an average of such values for a set of clusters. Therefore, the choice 
of the directions 8 = 0 and = 0 is quite arbitrary, and so for the sake of convenience 
they can be adjusted to the coordinate system of the simulation box. 

and with 
this normalization the quantity W, is another rotationally invariant characteristic of the 
cluster geometry. 

The multiplicator of the Qlm in eqn (2) is the so-called Wigner 3j  

Geometrical Information in the QI 

In order to clarify the geometrical implications of the invariants, let us write eqn (1) in 
detailed form as follows: 

where Pim' (x) is the associated Legendre polynomial, and we have utilized the Euler 
form of complex numbers. In this case we can safely reverse the order of summation, 
so that after the sums with respect to i and j we find exactly the superposition theorem 
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1330 Order Parameters in Liquids 

of the spherical harmonics.25 Thus we have 

where Nb is the number of bonds considered. Since cos ( w ~ )  = 1 if i =j, we have 

Q:= 1/N,+2C P f ( C 0 S  q j ) / N t  
i,j 

i < j  

where Pl( x) is the common (not associated) Legendre polynomial. 
Thus the Q, characterize the distribution of the cosines of angles formed by any pair 

of bond vectors. This form of the Ql is especially suitable for illustrating features not 
sufficiently emphasized in the paper of Steinhardt at aL20 

(i) The averaging procedure in eqn (3) yields positive definites for the Ql either if 
there is some translational symmetry regulating the ‘alignment’ of the clusters (i.e. the 
system is a more or less disordered lattice) or if the orientation of the clusters is completely 
random but the system is finite. Or, in a complementary formulation of this statement, 
the QI ( 1  > 0) are always zero for an infinite isotropic system. 

(ii) Partly as a consequence of this, the second-order invariants, except Qo which 
is always unity, depend on the number of bonds considered in a sample [see eqn ( 6 ) ]  
if the configurations are not ideally crystalline. This is so, since the integral of the 
Legendre polynomials are zero in the range - 1 to + 1, and therefore any subset of cos oii 
that correspond to a random distribution would not contribute to the sum (just as odd-Z 
spherical harmonics would not as far as the system is isotropic). Thus, if the distribution 
of the polar angles is not infinitely dense in a finite, but highly disordered, system, the 
even-Z Qlm will never be zero, but some positive definites. 

(iii) From this latter property it follows that comparisons between sets of Ql obtained 
for different samples should be made only when the number of bonds is the same in 
each case considered or when a suitable renormalization has been carried out. In this 
paper we normalize the Ql so that in the corresponding perfectly random case they 
would be unity for all even 1. 

(iv) From eqn (4) it is also obvious that the second-order rotational invariants 
characterize three-body angular distributions. 

We mention in passing that it is more economic to use eqn (1) and (3) rather than 
eqn (6) to evaluate the Q, for a set of bonds between a few hundred particles. Although 
the calculation of spherical harmonics is more cumbersome than that of Legendre 
polynomials, from a certain number of bonds upwards, the number of pairs in the sum 
of eqn (6) becomes so large that it overcompensates the gain given by the more simple 
formulae. 

The procedure suggested by Steinhardt et aZ. for averaging the spherical harmonics 
makes the invariants involve angular correlations within the clusters as well as cross- 
correlations in between them. If we break down the procedure into two, viz. first 
averaging within the clusters, then calculating the invariants, and finally averaging them, 
they would carry information only on angular correlations within the clusters. Obviously 
the two kinds of averages would become identical in the two extreme cases: (a)  if the 
clusters were rotated in the liquid with respect to one another in a perfectly random 
way (because the inter-cluster correlations would vanish) and (b )  if the system were an 
ideal crystal lattice (because intra- and inter-cluster pairs of bonds would then form the 
same angles). Real liquids can be expected more to resemble case (a). 

Geometrical Information in the W, 

The geometrical implications of the third-order rotational invariants are similar to those 
of the second-order ones in that they characterize the distribution of the three angles 
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cos 9 

Fig. 1. The first five even-f Legendre polynomials. (-) n =2 ,  (- - -) n = 4, (- - -) n = 6 ,  
(- - - -) n = 8 ,  ( . * - . )  n=10. 

formed by any two bond vectors joining particles within or in between the clusters. 
Thus they are characteristc of the four-body angular correlations. 

In order to show this in more detail, let us transcribe eqn (2) into the following form: 

m +m2+ m3 = O  

Nb Nb N b  

x c c P \ ~ J ( C O S  er)PI;"2l(cOs ~JP~;"J(cos e,) 

x cos I*1(4r - 4,) + m2(4s - 4t)l 
r = l  s=l t = l  

(7) 
where we have utilized the property of the three sums (each over all angles) to eliminate 
the imaginary part of the +-dependence, which cancels due to the antisymmetry of the 
sine function, and the condition of the first summation to eliminate m3 from the argument 
of the cosine factors. This formula shows clearly that ( a )  the W, indeed characterize 
the three-angle (i.e. four-body) correlation, ( b )  they are real numbers just as the Ql, and 
(c) they depend on the angles formed between pairs of bond vectors. 

Since the increase in sample size also diminishes the Wl some kind of normalization 
must be applied to these values as well. This can be made according to the suggestion 
of Steinhardt et UZ.,~' who define the ratio of the third- and second-order invariants as 
follows: 

where Q1 now means the renormalized second-order invariant. 
From eqn (7) it is evident that the calculation of the wI is more expensive than that 

of Q1 which itself requires considerable computer time. This fact imposes an upper 
limit on 1. There is, however, an additional, more academic, reason why the higher 
even-1 invariants are not worth calculating. Namely, when the average period of the 
oscillations of the Legendre polynomial (see fig. 1) in the cos wii space becomes smaller 
than the scattering of some characteristic angle, the corresponding invariant would 
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1340 Order Parameters in Liquids 

rapidly vanish. For the actual samples studied in this paper ZS 10 proved to be sufficient, 
as suggested by Steinhardt et al. 

Reference Sets of Invariants for Various Cluster Geometries 

The equations given previously determine a unique set of the even-Z invariants for a 
given configuration of the fluid. Unfortunately, the solution of the inverse problem, viz. 
the calculation of the average polyhedron corresponding to the more or less characteristic 
geometry of the clusters, is not definite. 

Thus, while sets of QI and wI may be extremely useful as order parameters, they are 
less unanimously informative when the actual structure is sought. 

The only practical way of geometrical analysis is to calculate a reference set of the 
rotational invariants for clusters including different numbers of particles with various 
geometries, and find the most reasonable (but not unique) average geometry by the best 
fit to the values obtained for a simulated configuration. For this purpose we have 
calculated the invariants for various, gradually randomized, N- neighbour clusters of a 
central particle. 

The randomization was carried out by displacing the neighbours according to a 
normal distribution applied in the x, y and z directions. In the original, regular, 
arrangements the neighbouring particles were placed onto the surface of a unit sphere, 
The standard deviation of the normal distribution was set to the same value in all three 
directions and measured relative to the unit particle distance assumed. 

According to the two different ways of averaging the spherical harmonics over the 
bonds, we have calculated two reference sets as follows. In one, which we shall call 
‘the distorted lattice case’, the gradual randomization was carried out on clusters 
originally oriented in the same direction, i.e. preserving more or less of the translational 
symmetry of a lattice, and the mean value in eqn (3) was obtained for all bonds 
irrespective of whether they belong to the same cluster or to two different ones. In the 
other, ‘the individual cluster case’, averages of spherical harmonics were taken only 
within each cluster, and then the invariants themselves were averaged. This is equivalent 
to handling the same set of clusters as those in the distorted lattice case as if rotated at 
random with respect to one another. 

Excerpts of these references sets are given in tables 1 and 2. [Two technical comments 
to be noted are as follows. (1) The wf of the individual cluster case converge so rapidly 
to zero that it is not worth while listing them. (2) Some smaller clusters given in table 
2 have been omitted from table 1, since a reasonable lattice-like structure constructed 
from them would require not only translation but also definite rotations. If, for some 
reason, such cases were to be calculated, one should rather define a larger basic cluster 
involving the rotated versions and still consider translational replicas only.] As expected, 
the differences between the two sets are considerable. A general feature of the differences 
is that the same scattering of the position coordinates causes slower convergence to 
unity in the Q, of the distorted lattice than in the individual cluster case. Another 
general trend is that the Q2 are usually larger for the lattice which is the consequence 
of originally parallel bonds forming angles close to zero owing to gradual randomization. 

The distribution of the cosine of angles between pairs of bonds in the individual 
clusters has also been calculated. Fig. 2 offers some of these distributions for comparison. 
Whereas, with a mean square deviation of ca. 0.3 of the randomization, the noise of the 
cosine distributions makes different geometries indistinguishable, some of the corre- 
sponding QI of table 2 still differ from unity beyond statistical error. This demonstrates 
the sensitivity of the invariants as order parameters. 

For the comparison of the second- and third-order invariants calculated for sets of 
simulated configurations with these reference values we used a computer program which 
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Table 1. Second- and third-order invariants of even-l spherical harmonics 
for various cluster geometries and their random distortions (‘distorted 

lattice’ case) 

normalization 

degree 1 91 w, x lo5 for 20 clusters 
randomization factor 

diamond-4 (tetrahedron) 

0 

0.1 

0.2 

0.3 

0.4 

0 

0.1 

0.2 

2 
4 
6 
8 

10 

2 
4 
6 
8 

10 

2 
4 
6 
8 

10 

2 
4 
6 
8 

10 

2 
4 
6 
8 

10 

2 
4 
6 
8 

10 

2 
4 
6 
8 

10 

2 
4 
6 
8 

10 

0.009 
1.269 
1.567 
0.53 1 
1.621 

0.102 
1.479 
1.646 
0.533 
1.237 

0.384 
1.673 
1.45 1 
0.637 
0.852 

0.725 
1.525 
1.099 
0.839 
0.810 

1.021 
1.157 
0.942 
1.029 
0.848 

-1541 2.494 
-1027 

84 
377 

-58 1 

254 3.175 
-48 1 

33 
128 

-261 

0 4.91 1 
-126 

9 
-15 
-17 

8 5.880 
-6 1 
-20 

16 
-2 

square planar-4 

-12 
4 
3 
3 

-1 

0.751 7044 
1.245 3683 
0.881 -213 
1.199 1880 
0.922 -48 1 

0.9 15 3614 
1.413 1910 
0.9 16 -101 
1.056 982 
0.697 -221 

1.41 1 759 
1.739 407 
0.877 -18 
0.621 142 
0.350 26 

8.334 

1 SO2 

1.875 

3.132 
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1342 Order Parameters in Liquids 

Table 1. (continued) 

normalization 

degree 1 Q1 w1 x lo5 for 20 clusters 
randomization factor 

0.3 2 1.69 1 225 
4 1.499 112 
6 0.685 17 
8 0.600 14 

10 0.522 -1 1 

0.4 2 1.744 145 
4 1.104 60 
6 0.591 3 
8 0.879 4 

10 0.679 0 

face-centred cubic-6 

0 2 
4 
6 
8 

10 

0.1 2 
4 
6 
8 

10 

0.2 2 
4 
6 
8 

10 

0.3 2 
4 
6 
8 

10 

0.4 2 
4 
6 
8 

10 

0 
1.699 
0.786 
1.597 
0.915 

0.027 
1.750 
0.73 1 
1.633 
0.857 

0.235 
2.352 
0.744 
0.828 
0.839 

0.644 
2.040 
0.677 
0.68 1 
0.956 

0.547 
1.718 
0.872 
0.677 
1.184 

0 
1445 
119 
530 
817 

-5 
990 

82 
321 
116 

18 
142 
23 
20 
-4 

1 
82 
11 
0 
1 

6 
20 
2 

-3 
-1 

0 

body-centred cubic-8 

2 0 0 
4 1.269 -1027 
6 1.567 84 
8 0.531 377 

10 1.621 -581 

0.1 2 0.040 447 
4 1.496 -467 
6 1.666 37 
8 0.509 146 

10 1.287 -252 

4.655 

5.342 

2.225 

2.521 

4.781 

5.721 

8.169 

2.494 

3.231 
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Table 1. (continued) 

normalization 

degree 1 91 w , ~ 1 0 5  for 20 clusters 
randomization factor 

0.2 2 
4 
6 
8 

10 

0.3 2 
4 
6 
8 

10 

2 
4 
6 
8 

10 

0.4 

0 

0.1 

0.2 

0.3 

0.4 

0 

2 
4 
6 
8 

10 

2 
4 
6 
8 

10 

2 
4 
6 
8 

10 

2 
4 
6 
8 

10 

2 
4 
6 
8 

10 

0.270 39 5.682 
2.002 -77 
1.662 5 
0.477 2 
0.586 -18 

0.3 18 -1 8.982 
2.163 -21 
1.255 1 
0.505 -1 
0.756 0 

0.942 -6 
1.295 -7 
1.014 1 
0.772 -2 
0.974 -1 

icosahedron-12 

0 
0 
3.229 
0 
1.770 

0.097 
0.176 
2.647 
0.63 1 
1.448 

0.169 
0.335 
2.888 
0.822 
0.785 

0.61 1 
0.723 
1.845 
0.799 
1.019 

0.823 
0.969 
1.510 
0.893 
0.803 

0 
-3 1 

-148 
3 

-81 

-138 
56 

-132 
2 

-14 

17 
2 

-22 
1 

-4 

2 
0 

-4 
-1 
-1 

-1 
1 

-1 
-1 
-1 

face-centred cubic-12 

2 0 0 
4 0.807 -21 1 
6 2.429 -18 
8 1.708 77 

10 0.054 -120 

11.638 

4.868 

5.035 

9.059 

14.132 

13.231 

4.229 
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Table 1. (continued) 

normalization 

degree 1 Q1 w,x105 for 20 clusters 
randomization factor 

0.1 2 0.246 0 4.905 
4 0.878 - 127 
6 2.229 -12 
8 1.372 47 

10 0.273 3 

4 1.169 -21 
6 2.004 -3 
8 0.994 6 

10 0.472 1 

4 1.078 -2 
6 1.457 0 
8 0.678 -1 

10 1.054 0 

4 0.723 -2 
6 0.857 -2 
8 1.586 -1 

10 1.182 1 

0.2 2 0.358 -2 8.066 

0.3 2 0.730 2 13.338 

0.4 2 0.650 -1 14.960 

0 

0.1 

0.2 

2 
4 
6 
8 

10 

2 
4 
6 
8 

10 

2 
4 
6 
8 

10 

0.3 2 
4 
6 
8 

10 

0.4 2 
4 
6 
8 

10 

hexagonal close packed-12 

0 
0.534 
2.665 
1.743 
0.055 

0.126 
0.674 
2.553 
1.335 
0.310 

0.400 
0.844 
2.199 
0.93 5 
0.621 

0.486 
0.879 
1.732 
1.116 
0.787 

0.68 1 
1.154 
1.243 
1.030 
0.889 

0 
80 
-8 
30 

-48 

2 
40 
-5 
13 
-7 

5 
4 
0 

-1 
0 

1 
-1 
-1 

0 
0 

4 
2 
1 
0 

-1 

5.499 

6.428 

10.760 

13.789 

13.056 
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Table 1. (continued) 

1345 

normalization 

degree 1 91 w, x lo5 for 20 clusters 
randomization factor 

body-centred cubic- 14 

0 2 
4 
6 
8 

10 

0.1 2 
4 
6 
8 

10 

0.2 2 
4 
6 
8 

10 

0.3 2 
4 
6 
8 

10 

0.4 2 
4 
6 
8 

10 

0 
0.155 
2.175 
1.828 
0.83 1 

0.091 
0.204 
1.928 
1.556 
1.218 

0.275 
0.41 1 
1.959 
1.165 
1.187 

0.493 
0.604 
1.379 
1.268 
1.254 

0.674 
1.017 
1.226 
0.966 
1.114 

0 
205 

17 
75 

-117 

-37 
71 
13 
58 

-25 

-29 
16 
1 
7 
0 

1 
0 
0 
0 

-1 

0 
-1 
-1 
-1 
-1 

0 

0.1 

0.2 

0.3 

face-centred cubic- 18 

2 0 0 
4 0.618 139 
6 1.287 -11 
8 2.469 51 

10 0.624 79 

2 0.189 -9 
4 0.655 80 
6 1.244 -7 
8 2.137 29 

10 0.773 6 

2 0.3 15 -1 
4 0.888 13 
6 1.258 -2 
8 1.427 4 

10 1.110 0 

2 0.674 -2 
4 0.975 0 
6 1.089 0 

4.259 

4.580 

9.068 

15.136 

18.805 

4.856 

5.743 

8.73 1 

14.774 
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1346 Order Parameters in Liquids 

Table 1. (continued) 

normalization 

degree 1 Q1 w1 x 10’ for 20 clusters 
randomization factor 

8 
10 

0.4 2 
4 
6 
8 

10 

0 2 
4 
6 
8 

10 
a 

1.190 1 
1.07 1 0 

0.654 -2 17.963 
1.014 1 
1.090 0 
1.162 0 
1.078 0 

cluster in fig. 6 

0.814 -255 
0.684 143 
1.881 -3 
0.724 -29 
0.895 6 

4.541 

Omissions due to limitations in size. 

measured the goodness of the fits by taking into account the error bars on the data as 
well as the differences in the mean values. 

Distance Correlation between Bond Angles 

The orientational correlation between clusters (identical in any other aspects) can be 
characterized, in principle, by their distance and by the Euler angles by which they are 
rotated to one another. However, once the spherical harmonics are calculated in the 
coordinate system of the simulation box, the following correlation function can be used 
with the same purpose: 

where 

Here r=lr,--r21 is the distance between the mid-points of two bonds at rl and r2 ,  and 
the mean values are calculated for all bonds at a distance r from one another. Eqn (11) 
gives the normalization factor, i.e. G,(r) is the bond density correlation function at 
distance r. 

If the decay of G,( r )  extends beyond the first-neighbour distance of the clusters, the 
latter are twisted with respect to one another by angles which do not correspond to 
zeros of the given spherical harmonic. If none of the G,(r) is such, the clusters are 
oriented perfectly at random. On the other hand, if all of the Gl(r)  decay beyond the 
first-neighbour distance, the clusters are arranged in parallel. 

In order to eliminate the noise of the Gl(r)  functions, they may be Fourier-trans- 
formed back and forth for smoothing as suggested in ref. (20). 
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A. Baranyai et al. 1347 

Table 2. Second- and third-order invariants of even-Z 
spherical harmonics for various cluster geometries and their 

random distortions (‘independent cluster’ case) 

normalization 

deviation 1 0, for 20 clusters 
mean square factor 

diamond-2 

0 2 0.833 1.449 
4 1.036 
6 1.115 
8 0.876 

10 1.139 
CI 

0 

0 

diamond-3 

2 0.620 
4 1.088 
6 1.266 
8 0.724 

10 1.299 

diamond-4 

2 0 
4 1.269 
6 1.567 
8 0.531 

10 1.621 

0.1 2 0.258 
4 1.169 
6 1.377 
8 0.894 

10 1.299 

0.2 2 0.416 
4 1.117 
6 1.250 
8 1.024 

10 1.190 

0.3 2 0.5 59 
4 1.145 
6 1.089 
8 1.117 

10 1.088 
0.4 2 0.730 

4 1.033 
6 1.073 
8 1.048 

10 1.113 

0 

diamond-5 

2 0.504 
4 0.881 
6 1.432 
8 0.698 

10 1.482 

1.862 

2.494 

2.345 

2.274 

2.222 

2.115 

2.541 

Pu
bl

is
he

d 
on

 0
1 

Ja
nu

ar
y 

19
87

. D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ita

et
sb

ib
lio

th
ek

 D
or

tm
un

d 
on

 2
0/

07
/2

01
7 

15
:2

5:
37

. 
View Article Online

http://dx.doi.org/10.1039/f29878301335


1348 Order Parameters in Liquids 

Table 2. (continued) 

normalization 

deviation 1 91 for 20 clusters 
mean square factor 

diamond-6 (symmetric) 

0 2 0.760 
4 0.750 
6 1.297 
8 0.857 

10 1.334 

0.1 

0.2 

0.3 

0.4 

0 

0.1 

0.2 

0.3 

2 0.777 
4 0.863 
6 1.205 
8 0.978 

10 1.175 

2 0.844 
4 0.946 
6 1.118 
8 1.011 

10 1.078 

2 0.947 
4 1.008 
6 0.968 
8 1.088 

10 0.986 

2 0.941 
4 1.034 
6 0.964 
8 1.052 

10 1.006 

diamond- 16 

2 0.425 
4 0.608 
6 1.750 
8 0.714 

10 1 SO0 

2 0.510 
4 0.638 
6 1.562 
8 1.017 

10 1.27 1 

2 0.599 
4 0.79 1 
6 1.335 
8 1.148 

10 1.124 

2 0.719 
4 0.939 
6 1.126 
8 1.129 

10 1.085 

2.288 

2.380 

2.577 

2.530 

2.541 

4.590 

4.643 

4.694 

4.427 
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Table 2. (continued) 

normalization 

deviation 1 Q, for 20 clusters 
mean square factor 

0.4 2 0.887 4.324 
4 1.026 
6 1.005 
8 1.024 

10 1.056 

square planar-4 

0 

0.1 

0.2 

2 
4 
6 
8 

10 

2 
4 
6 
8 

10 

2 
4 
6 
8 

10 

0.3 2 
4 
6 
8 

10 

0.4 2 
4 
6 
8 

10 

0 

0 

0.75 1 1 SO2 
1.245 
0.881 
1.199 
0.922 

0.832 
1.306 
0.909 
1.095 
0.855 

0.927 
1.23 1 
0.964 
0.953 
0.922 

0.916 
1.099 
1.016 
0.964 
1.002 

0.993 
1.045 
0.963 
0.989 
1.007 

face-centred cubic-4 

1.676 

1.918 

2.017 

2.047 

2 0.469 1.877 
4 1.465 
6 0.795 
8 1.386 

10 0.882 

face-centred cubic-5 

2 0.391 
4 1.515 
6 0.782 
8 1.430 

30 0.880 

1.956 

Pu
bl

is
he

d 
on

 0
1 

Ja
nu

ar
y 

19
87

. D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ita

et
sb

ib
lio

th
ek

 D
or

tm
un

d 
on

 2
0/

07
/2

01
7 

15
:2

5:
37

. 
View Article Online

http://dx.doi.org/10.1039/f29878301335


1350 Order Parameters in Liquids 

Table 2. (continued) 

normalization 

deviation 1 QI for 20 clusters 
mean square factor 

face-centred cubic-6" 

0 2 0 
4 1 A99 
6 0.786 
8 1.597 

10 0.9 15 

0.1 

0.2 

0.3 

0.4 

2 0.221 
4 1.633 
6 0.869 
8 1.328 

10 0.947 

2 0.480 
4 1.438 
6 1.015 
8 1.039 

10 1.025 

2 0.603 
4 1.200 
6 1.026 
8 1.106 

10 1.063 

2 0.787 
4 1.097 
6 1.050 
8 1.055 

10 1.008 

face-centred cubic-12 

0 2 0 
4 0.807 
6 2.429 
8 1.708 

10 0.0546 

0.1 

0.2 

0.3 

2 0.253 
4 0.787 
6 1.810 
8 1.282 

10 0.865 

2 0.469 
4 0.950 
6 1.378 
8 1.140 

10 1.062 

2 0.776 
4 0.918 
6 1.130 
8 1.131 

10 1.044 

2.225 

2.293 

2.526 

2.499 

2.531 

4.229 

3.688 

3.867 

3.771 
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Table 2. (continued) 

normalization 

deviation 1 91 for 20 clusters 
mean square factor 

0.4 2 0.641 
4 1.044 
6 1.127 
8 1.028 

10 1.157 

0 

0.1 

0 

0.1 

0.2 

0.3 

0.4 

face-centred cubic- 18 

2 0 
4 0.618 
6 1.287 
8 2.469 

10 0.624 

2 0.212 
4 0.734 
6 1.218 
8 1.905 

10 0.929 
a 

body-centred cubic 8 

2 0 
4 1.269 
6 1.567 
8 0.53 1 

10 1.62 1 

2 0.127 
4 1.348 
6 1.468 
8 0.761 

10 1.295 

2 0.419 
4 1.311 
6 1.239 
8 0.940 

10 1.087 

2 0.675 
4 1,138 
6 1.054 
8 1.075 

10 1.056 

2 0.613 
4 1.1 17 
6 1.108 
8 1.102 

10 1.058 

3.700 

4.855 

4.858 

2.494 

2.724 

3.040 

3.063 

3.091 

Pu
bl

is
he

d 
on

 0
1 

Ja
nu

ar
y 

19
87

. D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ita

et
sb

ib
lio

th
ek

 D
or

tm
un

d 
on

 2
0/

07
/2

01
7 

15
:2

5:
37

. 
View Article Online

http://dx.doi.org/10.1039/f29878301335


1352 Order Parameters in Liquids 

Table 2. (continued) 

normalization 

deviation 1 01 for 20 clusters 
mean square factor 

0.1 

0.2 

0.3 

0.4 

body-centered cubic-14 

0 2 
4 
6 
8 

10 

2 
4 
6 
8 

10 

2 
4 
8 

10 

2 
4 
6 
8 

10 

2 
4 
6 
8 

10 

0 
0.155 
2.175 
1 A28 
0.831 

0.356 
0.376 
1.827 
1.443 
0.995 

0.398 
0.843 
1.166 
1.160 

0.687 
0.963 
1.114 
1.100 
1.134 

0.777 
1.070 
1.061 
0.980 
1.110 

0 

0 

trigonal planar-3 

2 0.959 
4 0.719 
6 1.422 
8 1.023 

10 0.875 
U 

trigonal pyramid-4 

2 0.308 
4 1.311 
6 1.244 
8 1.407 

10 0.728 
U 

trigonal bipyramid-5 

0 2 0.232 
4 1.453 
6 1.059 
8 1.459 

10 0.794 
U 

4.259 

4.057 

4.349 

4.336 

4.103 

1.919 

2.468 

2.326 
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A. Baranyai et al. 

Table 2. (continued) 

1353 

normalization 

deviation I 91 for 20 clusters 
mean square factor 

0.1 

0.2 

0.3 

0.4 

hexagonal close packed- 12 

0 2 
4 
6 
8 

10 

2 
4 
6 
8 

10 

2 
4 
6 
8 

10 

2 
4 
6 
8 

10 

2 
4 
6 
8 

10 

0 
0.534 
2.665 
1.743 
0.055 

0.338 
0.483 
1.903 
1.304 
0.970 

0.672 
0.672 
1.332 
1.214 
1.108 

0.660 
1.025 
1.140 
1.066 
1.106 

0.77 1 
1.050 
1.050 
1.050 
1.076 

5.499 

4.49 1 

4.106 

3.918 

3.660 

tetrahedron distorted to icosahedral angles 

0 2 0.745 2.357 
4 0.745 
6 1.660 
8 0.745 

10 1.102 
a 

0 

0.1 

icosahedron- 12 

2 0 4.871 
4 0 
6 3.23 1 
8 0 

10 1.768 

2 0.463 4.076 
4 0.234 
6 2.312 
8 0.820 

10 1.169 
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1354 Order Parameters in Liquids 

Table 2. (continued) 

normalization 

deviation 1 91 for 20 clusters 
mean square factor 

0.2 2 0.508 3.925 
4 0.701 
6 1.551 
8 1.070 

10 1.167 

0.3 

0.4 

2 0.606 3.976 
4 1.048 
6 1.157 
8 1.055 

10 1.132 

2 0.661 3.889 
4 1.055 
6 1.098 
8 1.103 

10 1.081 

Omissions due to limitations in space. 

Local Geometry in Liquid Argon 

The configuration sets analysed were obtained by a rand canonical Monte Carlo 
simulation of argon, applying Lennard-Jones potentials! The pair correlation function 
was in excellent agreement both with experiments and other simulations. Simulated 
thermodynamic parameters such as density, compressibility and heat capacity were also 
close to experimental data. 

The size of the clusters was defined in two different ways: (i) by a cut-off sphere 
applied at a distance of 500 pm from the given central particle which, correspondingly, 
contained various numbers of neighbours giving an average of 12.0; (ii) by selecting 
only those clusters within the cut-off sphere which contained exactly 12 neighbours of 
the central particle. For case (i) we also made a distinction with respect to the energy 
of the central particle. The results are given in table 3 in which the mean square deviation 
of the invariants are also listed. 

It is seen that the Q, values of all cases in table 3, except the deepest-energy subset, 
coincide very well with the hexagonal close-packed ones randomized with a relative 
standard deviation of 0.1 to 0.3. On the other hand they significantly differ from those 
of icosahedral clusters. This also applies to the cases published by Steinhardt et aL, 
which correspond to simulations under different conditions.*' The fact that both the 
distorted lattice and the individual cluster cases appear among the best fits of the 
reference systems (capital and lower case codes, respectively, in table 3) indicates that 
there may be some more or less extended regions of clusters aligned in a lattice-like 
way. This is supported by the finding of Steinhardt et al. that the distance correlation 
of Q6 extends beyond the size of a single cluster. Thus it can be concluded that, in the 
vicinity of its melting point, the structure of liquid argon consists of 13-particle clusters 
of the hexagonal close-packed arrangement which are not distorted beyond recognition. 

This is an essentially different conclusion from that made in ref. (20), uiz. that while 
liquid argon at T" = 0.719 and with reduced density of 0.973 is practically indistinguish- 
able from a perfectly random system, the Q, patterns of supercooled argon at T* = 0.554 
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A. Baranyai et al. 1355 

f C C  - 6 l 

~ C C  - 8 

bCC -14 

I C O  - 12 

f c c  -12 

h c p - 1 2  

-1 0 1 -1 0 1 -1 0 1 -1 0 1 

Fig. 2. The cosine distribution for various clusters. The degree of randomization is 0.1, 0.2, 0.3 
and 0.4 from the left-1 to the right-hand side of the figure (see text). 

suggests the possibility of icosahedral symmetry. We think that the authors, using 
unnormalized raw data, underestimated the significance of their results on normal liquid 
argon. On the other hand, since those results were not compared to gradually distorted 
regular clusters, it could be assumed that distortion of an icosahedron could yield the 
Ql of supercooled argon which is, however, not the case. 

While this seems to be generally true, it must be emphasized that the appearance of 
icosahedron as one of the possible structures just for the deepest-energy clusters (and 
as a ‘non-aligned’ one at that) shows that, at least in this partial case, the expectation 
of Steinhardt et al. is probably correct. In other aspects the energy dependence of the 
structure is almost unrecognizable in table 3. There seems to be a slight trend towards 
less distorted hexagonal close-packed units as the energy of the central particle decreases, 
but it is on the verge of insignificance. 

Although the third-order invariants also characterize the angular correlation of 
‘bonds’, they are much more sensitive to distortions, and thus uninformative in liquid 
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1356 Order Parameters in Liquids 

Table 3. Second- and third-order invariants of even-) spherical harmonics for clusters with factor 
of renormalization f ,  (in brackets) 

standard standard 
I Or deviation w1 x lo5 deviation 

2 
4 
6 
8 

10 

2 
4 
6 
8 

10 

2 
4 
6 
8 

10 

2 
4 
6 
8 

10 

2 
4 
6 
8 

10 

2 
4 
6 
8 

10 

2 
4 
6 
8 

10 

2 
4 
6 
8 

10 

0.482 
0.750 
1.555 
1.240 
0.970 

0.543 
0.774 
1.387 
1.294 
1 .ooo 

0.436 
0.696 
1.707 
1.203 
0.956 

0.428 
0.609 
1.947 
1.188 
0.825 

0.406 
0.6 13 
1.783 
1.232 
0.963 

0.360 
0.677 
1.615 
1.309 
1.036 

0.353 
0.353 
2.068 
1.331 
0.893 

0.22 1 
0.528 
2.204 
1.296 
0.749 

E > -650 K ( f =  19.3) 
0.3 16 -0.2 0.6 
0.277 0.2 0.2 
0.055 0 0.2 
0.021 0 0 
0.100 0 0 

-650> E / K > - 700 ( f=  19.7) 
0.176 0 0.6 
0.29 1 0.3 0.4 
0.269 -0.1 0 
0.158 0 0 
0.105 0 0.5 

-700> E /  K > -750 (f=30.5) 
0.009 -0.1 0.3 
0.183 0 0 
0.290 0 0 
0.054 0 0.2 
0.1 19 0 0 

-750> E /  K >  -800 (f=31.5) 
0.108 0 0.1 
0.047 0 0 
0.393 0 0 
0.060 0 0 
0.152 0 0 

-800>E/K> -850 (fx22.9) 
0.057 -0.3 0.1 
0.022 0 0 
0.625 0 0.1 
0.034 0.1 0.2 
0.025 0 0 

-850KBE (f=11.6) 
0.128 -1.7 2.5 
0.091 -0.5 3.1 
0.059 -0.9 5.2 
0.243 0.5 1.3 
0.039 -0.1 0.2 

N =  12 (f=34.1) 
0.033 0 0 
0.234 0 0 
0.037 0 0 
0.193 0 0 
0.06 1 0 0 

all within cut-off (f=44.8) 
0.018 0 0.1 
0.027 0 0 
0.216 0 0 
0.171 0 0 
0.1 12 0 0 

symmetry/degree of 
randomization 

HCP- 12/0.35 
hcp- 12/0.2 

HCP-12/0.4 
fcc- 12/0.2 

hcp-12/0.2 
or 

HCP- 12/ 0.3 
fcc-12/0.02 

or 
hcp-12/0.2 

HC P- 121 0.3 
hcp- 1 2/ 0.1 

HCP- 12/ 0.3 
hcp- 12/0.1 

HCP-12/0.2 
or 

FCC-12/0.2 
hcp-12/0.1 

HCP-12/0.1 
hcp-12/0.1 

ICO-12/0.3 

HCP-12/0.1 
hcp- 12/0.1 

or 
fcc- 12/0.1 
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argon under these conditions. As mentioned in the previous section, their non-zero 
values would indicate more or less extended four-body correlations. 

Local Structure in Molten Alkali-metal Halides 

The second-order invariants of the spherical harmonics were also calculated for molten 
LiI and the complete set of molten alkali-metal chlorides simulated at temperatures 
slightly above their melting points under normal pressure. The configurations were 
obtained under conditions described elsewhere.26 Since the third-order invariants proved 
to be less informative in the cases of other liquids covered in the present study, we 
omitted them, but included the calculation of the distance dependence of the second- 
order invariants instead. 

The Q1 are listed in table 4. The conditions of selection, the formula of the molten 
salt, the charge sign of the central and neighbouring ions (+/- stands for both +/- 
and -/+) and the average number of neighbours within the cut-off sphere are given. 

A general conclusion from these results is that the Qf of the simulated configurations 
fit much better to some of the distorted lattice cases than to those of the individual 
clusters, i.e. these molten salts resemble the corresponding crystalline states not only in 
their first coordination spheres but in somewhat more extended (yet local) regions. 
Conclusions on the particular structures can be drawn as follows. 

(i) There is the almost unanimous case of NaCI, KC1 and CsCl, in which the geometry 
of the unlike-charged neighbours of the ions as well as both ‘sublattices’ of like-charged 
ones indicate the same structure. Indeed, one obtains an octahedral arrangement of 
unlike-charged neighbours when sliding two face-centred cubic sublattices into each 
other with a ( & O ,  0) shift of coordinates. RbCl has probably the same f.c.c. structure, 
although its cationic ‘sublattice’ seems to resemble a b.c.c. lattice rather than an f.c.c. one. 

(ii) Similarly to the latter, the lithium salts represent cases when there seems to be 
some contradiction between the best-fitting structure of the total lattice and those of the 
‘sublattices’; however, the contradictions can be resolved. Namely, both Li+ and I- 
subsystems show similarities to hexagonal close-packed lattices which, when inter- 
penetrated to form a wurtzite-type structure, would require a tetrahedral +/ - neighbour- 
hood. The square planar structure, distorted at random, which gives the best fit, although 
not quite in harmony with this expectation, is not far from a tetrahedron distorted at 
random. The wurtzite-like structure of molten LiI is in excellent agreement with what 
has been conclud.ed on the basis of the geometrical analysis of the same configurations 
by the Dirichlet-Voronoi polyhedra.” Similarly, with the interpenetration of the two 
b.c.c. lattices of LiCl one would expect to have a sphalerite-type tetrahedral structure; 
however, the best-fitting geometry of the +/- neighbours proved to be square planar 
or a deficient asymmetric octahedron. The lithium sublattices fit to more distorted cases 
than do the corresponding anion sublattices; this can be explained by the fact that these 
salts are weak superionic conductors in the solid and the higher mobility of the 
small Li+ ions is preserved even in the molten state. 

Fig. 3 ( a )  and ( b )  show the distance dependence of the Q1 on the two extreme 
examples of the f.c.c.-like structures of molten NaCl and CsCl. The curves, especially 
those of 0 8  ad QlO, support the previous conclusion that the angular correlations extend 
beyond nearest-neighbour distances. The decay of distance correlation of the Qf of 
NaCl is smooth, indicating less long-range correlation for Q8( r )  and Ql0( r ) ,  whereas 
the same functions of CsCl (similar to KCl and RbCl) exhibit characteristic bumps for 
Q 6 ( r )  and Q s ( r ) .  The fact that there are less particles within the first coordination 
sphere of the like-charged ‘sublattices’ of NaCl than in those of CsCl [ca. 14 and 18, 
respectively, as calculated by integrating to the first minimum in g + + ( r )  and g--(r)J is 
a consequence of the difference in the decay of the angular correlations. 
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Table 4. Second-order invariants of even-1 spherical harmonics for clusters in molten 
alkali-metal halides 

selection 

symmetry/degree of 
randomization 

(renormalization 
1 91 factor) 

LiI, +/-, N = 3.9 

LEI, +/ -, N = 4.4 

NaCl, +-, N =4.9 

KC1, +/-, N = 5.8 

RbCI, +/ -, N = 5.7 

CSCI, +/-, 6.0 

LiI, +/+, N = 11.7 

LiCl, +/+, N = 13.6 

NaCI,+/+, N = 13.7 

2 
4 
6 
8 

10 

2 
4 
6 
8 

10 

2 
4 
6 
8 

10 

2 
4 
6 
8 

10 

2 
4 
6 
8 

10 

2 
4 
6 
8 

10 

2 
4 
6 
8 

10 

2 
4 
6 
8 

10 

2 
4 
6 
8 

10 

1.439 
1.379 
0.742 
0.773 
0.667 

0.896 
1.531 
0.733 
0.977 
0.863 

0.540 
2.104 
0.899 
0.809 
0.647 

0.474 
2.45 1 
0.817 
0.768 
0.490 

0.394 
2.476 
0.852 
0.694 
0.584 

0.342 
2.671 
0.833 
0.726 
0.427 

0.396 
0.915 
1.433 
1.280 
0.976 

0.500 
0.550 
1.400 
1.250 
1.300 

0.391 
0.703 
1.445 
1.406 
1.055 

SQP - 0410.2 
(f= 15.7) 

FCC - 04/0.4 

SQP - 04/0.3 
or 

or 
sqp-o4/0.2 
(f= 16.3) 

(f= 18.0) 
FCC-06/0.3 

FCC-06/ 0.2 
( f =  16.3) 

FCC-06/0.2 
( f =  15.8) 

FCC-06/0.2 
( f =  10.7) 

HCP-12/0.3 
or 

fcc-12/0.2 
( f =  15.7) 

BCC-14/0.3 
or 

hcp-12/0.2 
( f =  16.3) 

FCC- 1 8/ 0.3 
or 

hcp- 12/0.2 
( f =  18.0) 
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Table 4. (continued) 

1359 

selection 

symmetry/degree of 
randomization 

(renormalization 
1 Q i  factor) 

KCl, +/+, N = 16.6 2 
4 
6 
8 

10 

RbC1, +/+, N = 17.7 

CsCl, +/+, N = 18.0 

LiI, -/-, N = 11.8 

LiCl, -/-, N = 13.8 

NaC1, -/-, N = 14.3 

2 
4 
6 
8 

10 

2 
4 
6 
8 

10 

2 
4 
6 
8 

10 

2 
4 
6 
8 

10 

2 
4 
6 
8 

10 

KCI, -/-, Nz17.0  2 
4 
6 
8 

10 

2 
4 
6 
8 

10 

2 
4 
6 
8 

10 

RbCl, -/-, N = 17.4 

CsCl, -/-, N = 18.6 

0.248 
0.496 
1.525 
1.950 
0.780 

0.484 
0.484 
1.694 
1.371 
0.968 

0.211 
0.282 
1.056 
2.570 
0.880 

0.433 
0.793 
2.067 
0.986 
0.721 

0.23 1 
0.692 
1.846 
1.115 
1.115 

0.685 
0.444 
1.290 
1.532 
1.048 

0.203 
0.291 
1.221 
2.209 
1.076 

0.543 
0.775 
1.008 
1.434 
1.240 

0.284 
0.483 
1.080 
2.528 
0.625 

FCC-18/0.25 
or 

bcc-l4/0.1 
(f= 16.3) 

BCC-14/0.3 
or 

bcc-14/0.1 
(f= 15.8) 

FCC- 1 8/0.05 
(f= 10.7) 

HCP- 12/ 0.2 
(f= 15.7) 

BCC-14/0.2 
or 

or 
~ C C -  14/ 0.1 

hcp- 12/0.1 
(f= 16.3) 

(f= 18.0) 
fcc-l8/0.2 

FCC-18/0.1 
(f= 16.3) 

FCC- 18/0.2 
(f= 15.8) 

FCC- 18/0.1 
(f= 10.7) 
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Fig. 3. (a )  Dependence of the even-f rotational invariants on the distance of the middle point of 
bond vectors from the central particle in molten NaCI. Arrows with +/-, +/+ and -/- signs 
show the cut-off radius used in calculating the data in table 4. The curves are taken only within 

the minimum image box. (b)  As ( a )  but for molten CsCI. 
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The symmetry of the clusters corresponds to lattices which are the stable crystalline 
states under normal pressure, except for the cases of molten LiI and LiCl, which should 
also be f.c.c.-like, instead of having the wurtzite- or sphalerite-like structure indicated 
by the invariants. The strong resemblance of the f.c.c. lattice of the molten sodium, 
potassium, rubidium and caesium chlorides near their melting points is probably the 
reason why there are no reports of their forming glasses.28 The geometrical differences 
of the lithium halides in their molten and crystalline states may partly explain why their 
melting points are depressed much lower than those of the sodium halides. 

Local Structure in Water 

The application of the rotational invariants of spherical harmonics to discover local 
order in simulated water samples has been much less successful than in the cases 
discussed above. 

20 independent configurations of liquid water simulated by the molecular-dynamics 
method29 at room temperature and under normal pressure using ST2 pair potentials3’ 
were analysed with respect to the positions of the oxygen atoms. The simulation box 
contained 200 water molecules. The results are summarised in table 5 ,  together with 
those obtained on a sample of a low-density (0.8 ~ m - ~ )  fictitious model of water.31 

In contrast to expectations based on the assumption of extended hydrogen-bonded 
structure, normal water seems to be disordered, at least as far as the nearest neighbour- 
hood is considered. Except for the Q2, practically all the Ql are equal to unity within 
standard deviations. Similarly, all the w, are very close to zero. Taking into account, 
however, that on one hand, the reference values of the invariants for the undistorted 
clusters themselves (see tables 1 and 2) are not far from unity and, on the other hand, 
that they approach unity quite rapidly with randomization, it can also be concluded 
that the invariants are less sensitive to local symmetries than they are for larger clusters. 
Thus the loose structure of water with a low coordination number for the water molecules 
is not a good field of application of the spherical harmonic invariants. 

In light of this it is the more striking that the ‘low-pressure’ water seems to be so 
structured, although the extent of the network of hydrogen bonds had been known to 
be greater than that in normal water.31 We have been unsuccessful in finding the cluster 
which would correspond exactly to the values of Q, obtained as averages of 40 indepen- 
dent configurations of 216 water molecules. It is doubtless, however, that no angular 
correlations of four nearest neighbours can yield these values, neither can any simple 
combination of random distorted tetrahedra. The low value of Qs and Qlo can be 
achieved by ‘double’ icosahedral angles (see fig. 4) between several pairs of bond vectors 
within or in between the five-membered basic clusters, but the simultaneously high value 
of Q6 can be attained only by some peculiar arrangement of the ‘tetrahedra distorted 
to icosahedral angles’. The invariance of the Q, data with respect to the number of 
neighbours considered is another proof of the existence of rather large clusters. After 
several trials and errors, the cluster depicted in fig. 5 gave Qr patterns similar to the 
values obtained on low-pressure water. 

In the search for the appropriate cluster, we have utilized a recent result of Pilinkis 
et ~ 1 . ~ ~  who found by statistics on the first coordination spheres of water molecules in 
both ST2 and ‘central force’ models that the distance between two molecules in the 
coordination sphere is the same as that between them and the central molecule. That 
is, three water molecules form an approximately regular triangle. If one assumes that 
the other two neighbours in the first coordination sphere open up the angle between 
them to make it identical with that between one of their bond and either of those that 
closed up to each other, then this optimum angle proves to be ca. 117”. In comparison 
to this, the ‘double’ icosahedral angle is 116.65”, which is in excellent agreement with 
the former value. 
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Table 5. Second- and third-order invariants of even-l spherical harmonics for clusters in ST2 
model water contitions of selection shown, with factor of renormalization, f; in brackets 

standard standard symmetry/degree of 
1 01 deviation w ,  x lo5 deviation randomization 

2 
4 
6 
8 

10 

2 
4 
6 
8 

10 

2 
4 
6 
8 

10 

2 
4 
6 
8 

10 

2 
4 
6 
8 

10 

2 
4 
6 
8 

10 

2 
4 
6 
8 

10 

2 
4 
6 

0.788 
1.068 
1.1 19 
1.004 
1.019 

0.680 
1.103 
1.130 
1.013 
1.072 

0.606 
1.137 
1.161 
1.007 
1.086 

0.47 1 
1.132 
1.163 
1.226 
1.006 

0.545 
1.053 
1.199 
1.164 
1.036 

0.539 
1.073 
1.265 
1.095 
1.026 

1.303 
0.434 
2.77 1 
0.234 
0.258 

1.333 
0.445 
2.800 

‘normal’ water 
first 2 neighbours (f= 16.4) 

0.239 0.7 0.4 
0.252 0.2 0.9 
0.172 0 0 
0.1 19 0 0 
0.1 16 0.1 0 

first 3 neighbours ( f =  19.5) 
0.198 0.3 0.7 
0.296 0 0.1 
0.179 0 0.1 
0.161 0 0.3 
0.103 0 0 

first 4 neighbours (f= 22.0) 
0.171 0.1 1.2 
0.324 0 0 
0.165 0 0.1 
0.171 0 0.1 
0.070 0 0 

first 5 neighbours (f= 31.4) 
0.377 0 0 
0.169 0 0 
0.206 0 0 
0.206 0 0 
0.149 0 0 

first 6 neighbours (f=27.1) 
0.301 0.1 0.5 
0.336 0 0.2 
0.236 0 0 
0.203 0 0 
0.130 0 0 

all within 0.34 nm (f = 24.4) 
0.187 0.7 0.7 
0.309 0 0.2 
0.180 0 0.1 
0.185 0 0.1 
0.112 0 0 

‘low-pressure’ water 
first 2 neighbours (f=3.39) 

0.010 16.4 3.4 
0.075 131.1 32.3 
0.573 -67.9 18.5 
0.034 23.8 8.5 
0.037 -2.6 26.1 

first 3 neighbours (f=3.52) 
0.032 3.2 3.9 
0.042 125.4 31.3 
0.470 -74.3 12.5 

dia-02/ -= .2 

dia-03/ > 0.1 
or 

trp-03/0.3 

ico-04/0.2 
or 

dia-04/> 0.3 
fcc-O4/0.3 
trp-04/ > 0.2 

tbp-05/ > 0.2 
or 

dia-05/ > 0.2 

fcc-06/ > 0.3 

any 
dia-06/0.3 

trp-04/0.1 
or 

dia-04/0.3 

fig. 61 < 0.1 

fig. 6/<0.1 
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Table 5. (continued) 

standard standard symmetryldegree of 
1 01 deviation w1 x lo5 deviation randomization 

8 
10 

2 
4 
6 
8 

10 

2 
4 
6 
8 

10 

2 
4 
6 
8 

10 

2 
4 
6 
8 

10 

0.200 
0.22 1 

1.403 
0.430 
2.759 
0.203 
0.215 

1.395 
0.435 
2.765 
0.194 
0.212 

1.394 
0.434 
2.766 
0.193 
0.212 

1.395 
0.433 
2.853 
0.193 
0.21 1 

fig. 6/<0.1 

0.024 36.6 20.6 
0.032 -4.4 44.7 

0.022 -33.1 12.2 fig. 61 <0.1 
0.029 103.7 
0.448 -73.3 6.8 
0.022 45.9 14.3 
0.029 -3.0 49.4 

first 5 neighbours (f=3.64) 
0.022 -27.3 10.1 
0.033 96.3 45.8 
0.464 -72.0 7.4 
0.022 45.4 20.3 
0.029 -3.3 49.3 

first 6 neighbours (f=3.65) 
0.022 -28.6 11.3 
0.033 94.2 48.5 
0.456 -7 1.8 7.2 
0.022 45.9 20.4 
0.026 -3.5 52.7 

all within 0.34 nm (f=3.65) 
0.023 -28.3 11.4 
0.03 1 94.0 48.5 
0.456 -7 1.9 7.2 
0.024 45.9 20.4 
0.027 -3.5 52.7 

first 4 neighbours (f=3.64) 

fig. 6/<0.1 

fig. 6/<0.1 

Fig. 4. The distorted tetrahedron of the most likely arrangement of five nearest-neighbour water 
molecules placed into an icosahedron. 

However, the reason for this peculiar distortion of the tetrahedra is still a puzzle to 
us, and we plan to study it by including the angular correlations within the subsystem 
of protons as well as between oxygens and protons. 

Conclusions 

In light of the previous sections, the rotational invariants of even-l spherical harmonics 
can be utilized in characterizing the angular correlations within or in between clusters 
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Fig. 5. A schematic perspective representation of the 24-molecule cluster of ‘low-pressure’ water. 

of particles in fluids. The second- and third-order invariants represent three- and 
four-body angular correlations. The values of the wl seem to be too sensitive to small 
changes in the geometry of the clusters in Iiquids; therefore they tend rapidly to zero 
as the degree of randomization increases. The second-order invariants retain their 
characteristic features even in rather disordered systems. Thus, they are more suitable 
to detect residual symmetry properties in the geometry of clusters than either the 
third-order invariants or the distribution function of angles formed by pairs of bond 
vectors. This is because the relationship of these invariants to the angular distribution 
function is similar to that of the moments of a probability density to the corresponding 
distribution in such a way that the evenly distributed noise does not contribute to the 
values of the invariants. Therefore, the QI have the optimum sensitivity as indicators 
of local order in fluids. 

By choosing the appropriate method of renormalization to eliminate the effect of 
sample size on the values of the invariants and by using a set of reference values to 
which the invariants of a configuration under study are compared, information can be 
obtained on symmetry properties of local clusters as well as eventual inter-cluster angular 
correlations. Although the odd-Z invariants, calculated from spherical harmonics 
averaged over all bonds, are expected to be zero owing to the isotropic nature of fluids, 
they may be non-zero, and thus serve as additional order parameters, if the averages 
are taken only within adjacent neighbourhooods, i.e. if only intra-cluster correlations 
are to be revealed. This aspect deserves further attention. 

It would also be appropriate to investigate the eventual effects of the size of the 
simulation box on the value of the rotational invariants. Although we do not expect 
such effects to bias the data, they may be significant in studies of long-range correlations 
(owing to long-range forces) in an insufficiently sized simulation box. 

The structure of dense liquids, such as Lennard-Jones argon and the simple Coulomb 
liquids represented in this study by the molten alkali-metal halides, is determined mainly 
by the repulsion potentials acting among the particles, i.e. by their size. This seems to 
be the governing rule beyond the facts that (i) argon has a local hexagonal close-packed 
structure, (ii) molten sodium, potassium, rubidium and caesium chlorides have face- 
centred cubic lattice-like, non-local structures in increasing extent in this order, and 
(iii) molten lithium chloride and iodide have sphalerite- and wurtzite-type lattice-like 
structures. All of these correspond to expectations based on models of best-fitting 
spheres. 
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The structure-making effect of angle-dependent attraction forces seem to predominate 
in low-density liquids such as ‘low-pressure’ water, whereas the same pair potentials 
cannot build up such an extended hydrogen-bonded structure when the density is slightly 
increased from its optimum with respect to hydrogen bonding although retaining the 
low density relative to the above examples of liquid argon and molten salts. Thus liquid 
water under normal pressure and temperature seems to be the most disordered liquid 
among those studied in this paper as far as local geometry is concerned. 
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