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It is known that the rotational equation of motion of rigid molecules in M D  simulations can be solved in 
a singularity-free form if quaternions are used for the description of the rotational motion. We show that 
these quaternions are also suited for the calculation of the so-called ‘g-coefficients’, which are the expansion 
coefficients of the molecular pair correlation function (MPCF) in terms of Wigner functions. This is due 
to the fact that quaternions arc themselves a representation of the rotation group and can be referred to 
an arbitrary coordinate frame in a particularly simple way. As an application for the quaternion formalism 
we calculate some g-coefficients of the MPCF of methylene chloride (CH? CI?). 

KEY WORDS: Molecular pair correlation function, expansion coefficients, quaternions, molecular dyn- 
amics simulation, molecular liquids, methylene chloride. 

1 INTRODUCTION 

The statistical theory of simple atomic liquids tells us that many th~rm~dyn_amic 
quantities can be expressed in terms of the pair correlation function g ( R , ,  R2), R , ,  g2 
being the positions of two atoms, if the intermolecular potential is assumed to be 
pairwise additive. Due to the homogenity and the isotropic symmetry of a liquid the 
pair correlation function i s  tfanslafionally and rotationally invariant i.e. it can be 
written as g(R), where R = IR, - R2(.  There are two generalizations of the usual pair 
correlation function for the case of a molecular liquid: (a) the description of the liquid 
structure in terms of intermolecular site pair correlation functions gUB(R) and (b) the 
description of the liquid structure in terms of the mafecular pair correlation function 
(MPCF) g(R, Q , ,  Q,. Q,,) [ l ,  2, 31, generally depending on the center of mass (cms) 
separation distance R = 12, - k2 1, the orientations Q, , Q2 of two molecules and the 
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orientation R,: of the unit vector along the axis R2 - R ,  , Corresponding to the case 
of atomic liquids Ihe M P C F  has to be translationally and rotationally invariant. 
which reduces the number of independent variables from 9 to 6. The two descriptions 
of the liquid structure mentioned above are not really equivalent, since quantities as 
the dielectric constant. which depend on the orientational correlation between the 
molecules, cannot be expressed rigorously by the site pair correlation functions. 

Site pair correlation functions are often used to extract the structure of a molecular 
liquid from neutron diffraction experiments, because the differential cross section for 
the neutrons can be very easily expressed in terms of their Fourier-Bessel transforms. 
In that case the number of sites is equal to the number of non-equivalent atoms in one 
molecule yielding the following fundamental difference between the two descriptions 
of the liquid structure mentioned above: Expanding the M P C F  in a series of orienta- 
tion dependent basis functions, with coefficients (called ‘g-coefficients’) only depend- 
ing on R. i t  is cvidcnt that the injinte set of g-coefficients mathematically cannot be 
equivalent to the,fiwite set of N ( N  + 1)/2 site pair correlation functions, A’ being the 
number of non-equivalent atoms per molecule. Of course the question arises how 
many of the g-coefficients must be taken into account to give a .vati.$uctory description 
of the liquid structure. 

Questions like that could in principle be answered by direct calculation of the 
differential neutron cross sections from the local particle density [4] and  by calculating 
i t  according to its representation in terms of g-coefficients as given by Blum, Narten 
and Zeidler [5 ,  61. At the same time this would be a test for the potential used for the 
MD-simulation. Another interesting aspect that can be studied by a g-coefficient 
analysis i s  the character of intermolecular orientations in a liquid consisting of 
non-linear molecules: do the molecules of a special liquid behave similar as spherical 
molecules, linear molecules, o r  docs the intramolecular structure of the molecule play 
a n i m por t a n t role? 

Quaternions introduced by the Irish mathematician W . R .  Hamilton. have become 
quite popular in M D  simulations. because the rotational equation of motion for rigid 
molecules can be solved in a singularity-free form, if the rotational motion is described 
in terms of quaternion parameters [7]. We show in this paper that they are also useful 
for the calculation of g-coefficients, since they can be easily referred to a n  arbitrary 
coordinate system. In section 2 we give a short review of the most important formulas 
and relations concerning the so-called rotational invariant and irreducible expansion 
of the M P C F  and in section 3 we describe how to use quaternions for the calculation 
of g-coefficients. Finally we apply our algorithm to calculate some g-coefficients for 
methylene chloride ( C H 2 C f z )  which is a molecule with C2, -symmetry having a per- 
manent dipole moment. 

2 T H E  MOLECULAR PAIR CORRELATION FUNCTION 

As already mentioned, the molecular pair correlation function for rigid molecules is 
a straightforward generalization of the usual pair correlation function for atomic 
liquids. In general, the position of a pair of non linear molecules is fixed by 

I .  the sepa_ration distance K ,  of the molecular centers of mass, R,, = IR’, - f ? ! ,  
where R,,  R, denote the cms coordinates of molecule i resp. j ,  
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2. the orientation a,, of the unit vector along k, = k, - xi, specified by the two 
angles @,, (azimuthal angle) and 0, (polar angle), 

3. the orientation Q, of molecule i, specified by the three Euler angles CI,, P I ,  y I ,  
4. the orientation Q, of moleculej, specified by the three Euler angles a,, p,, y,. 

A possible way of representin the MPCF is to expand it in a series of orientation 
dependent basis functions @ ~ ; . ~ l , m 2 . f l ~ . H , z  (0, , R2,  R,,), each of them being simply the 
following product of Wigner functions: 

(1) 

/ F./lz 

@11.12.112 
ml.nlm2.npL,  ( 0 1 3  02, ~ 1 7 )  = D21,nI ( ~ 1 ) ~ ~ 2 , n 2 ( ~ 2 ) ~ b l T n , , ( ~ l z ) .  

g(R, Ql 9 Q,, Q l 2 )  = c g~;l~~:~,.,12.n,*(R)*@:;~(l~*,"*."IL (Q, > Q*, Q l , )  

The expansion of the MPCF in terms of the basis functions, given in (1 )  reads 
(summation over all indices is understood): 

(2) 

This representation of the MPCF is called the reducible representation. Taking into 
account that a simple molecular liquid is isotropic it makes more sense to expand the 
MPCF in a set of angular dependent basis functions which are invariant under 
rotations. Such a set of basis functions can be faun? by_constr_ucting-the standard 
eigenfunctions of the total angular momentum L = L,  + L, + L,, with total 
angular momentum L = 0. An eigenfunction corresponding to L = 0 transforms 
like a scalar, i.e. invariant, under rotations. Noting that the Wigner functions are 
themselves eigenfunctions of the angular momentum operator in the position re- 
presentation (expressed in terms of Euler angles) [8], one can construct the desired 
basis functions in the following way [8]: 

The symbols ( ) are the Wigner 3,-symbols [8, 91. The expansion of the MPCF 

in the basis functions given in (3) is known as relational invariant representation [3]: 

(4) g(R,  R , ,  L2,, R12) = c gj;;/i2;2(R)*@:;y;2 (a , ,  n,, n,,) 
Sinceg(R, GI, R,, Q,,)  is invariant under rotations one can choose a coordinate frame 
in which R,, is parallel to the z-axis, i.e. Q,, = (0, 0). As a consequence one has 
D$,?,12(Q12) = D$,&(O, 0) = 60,nlz. Taking into account that the sum of the lower 
indices in the 3,-symbol must be zero, one obtains the irreducible representalion of the 
MPCF: 

( 5 )  g ( R  a;,  0;) = c g ~ ~ ~ ~ ~ ~ . ~ l ( ~ ) * ~ ~ l . ~ l ( Q ~ ) ~ ~ ~ . - ~ l ( Q ~ ~ ,  

where 

The primes indicate that the orientations refer to a coordinate frame in which R , ,  is 
parallel to the z-axis. We drop in the following this labelling for reasons of con- 
venience in case that no confusion can happen. 
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The inversion of ( 6 )  can be obtained by using the orthogonality relation [9] 

With a = I , .  CI = n , ,  b = I?, f l  = - n l .  c = I , , ,  7 = 0. and the condition 
r + f i  + y = 0 one has: 

The upper and hwcr limit for thc summation ovcr i z l  i \  nzin(l,, 1:) and -nzrii(l,, 1:) 

3 CALCULATION OF g-COEFFICIENTS FROM M D  SIMULATIONS 

3. I Basic Srrcrtegj, 

Equation ( 5 )  is the starting point for the calculation of g-coefficients from M D  
simulations. From the orthogonality relation of the Wigner functions [S] 

(9) .o f" .o.o r f"dydfldasin B D*,:{,,, (a. B. y>D:?,,l (x, D, 7 )  

one obtains immediately 

x j.[da, ~ Q A R ,  a,. WD*,';.,, (a, )D$ (a?). (10) 

In particular the g;l:&-coefficient is identical with the pair correlation function for the 
cms positions of the molecules. 

Writing down the MPCF as a straightforward generalization of the atomic case one 
obtains: 

( 1  1 )  
N 

g(R,  R , ,  0,) = ~ (x 6(k - kq)6(R, - Qi)6(Q, - 
@ I &  \ I f ,  

with 9 ,  = e2 = hiV.1/(Sn2).  Inserting this expression into (10) yields 

We remember that 0, and a, must be referred to a coordinate system in which R,, I S  
parallel to g7! Equation (12) shows that the g-coefficients for the irreducible re- 
presentation of thr MPCF are calculated basically with the same strategy as for usual 
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pair correlation functions. The only difference is that instead of incrementing the 
histogram channels by one for each pair of molecules they are now incremented by 
a product of Wigner functions, depending on the orientation of the molecules. 

I 

3.2 Spatial Rotations und Quaternions 

Now we come to the connection between quaternions and rotations in space. The 
quaternions are so-called ‘hypercomplex numbers’ with one basis element 1, re- 
presenting the ‘l’, and three ‘imagninary’ basis elements Z, J,  and K. An arbitrary 
quaternion is written as 

Q = 40’1 + ql*Z + q2-J + q,*K,  (13) 
where qo, 4 ,  , q 2 ,  q3 are real numbers. The basis elements obey the following algebra: 

1 1  J K  
1 1 1  J K  

I - 1  K -J  
J J - K  --I J 
K K J  - 1  - 1  

From this multiplication table i t  is obvious that quaternion multiplication is not 
commutative. One possible matrix representation of the basis elements is given as 
follows: 

1 0 0 0  0 - 1  0 0 

0 0 1 0  

0 0 0 1  

0 0 - 1  0 0 0  0 - 1  

J = I: g g A), K = I: ; -; j (15) 

0 - 1  0 0  1 0  

Therefore the matrix representation of an arbitrary quaternion is according to ( 1  3): 

40 -41 -42 -43 

= :: -;; -:j (16) 

- 42 

One can define the complex Conjugate of a quaternion analogous to the complex 
conjugate of a usual complex number: 

Qcr) & qo*l - q , * Z  - q2*J - q3*K. (17) 
From (15) it follows immediately that the matrix representation of the complex 
conjugate quaternion is given by the transposed matrix. It is natural to define the 
‘length’ IIQll of a quaternion by 
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IlQIi = J'd + ~f + YS + qI, (18) 

Q'Q = (& + 4; + q; + $ ) * I  (I91 

because the relation 

holds. From (19) i t  can be seen immediately that a quaternion of length one I S  

represented by an orthogonal matrix. 
Defining (a) Q(G, 0) b y  

ql,(G. 0) = cos(@,i2) 

and ( b )  

A = z;I + u;./ + r;.K. (21 I 

A' = Q'AQ = x:*I + u:.J + x ( 2 2 )  

u = D'(t?, @)d. (23) 

The components 6' transform exactly as the components of a vector dunder a rotation 
of the coordinate system, described by a rotation matrix D ( i ,  @), given in terms of the 
unit vector n' along the rotation axis and the rotation angle (I) (see Appendix A). 
Therefore equations (22, 23) express a relation between quaternions and rotation 
matrices: Each rotation matrix D(6, @) can be mapped on a unique quaternion Q(n'. 
a). It should be noted that the reverse is not true, since we have D ( i ,  27r) = I , , ,  and 
Q(G, 271) = - I,,, jl,,, and denote the unit matrix in 3 and 4 dimensions) As a 
consequence Q(6,27r) = - I ,4) and Q(G,47r) = I o l  are mapped both on 1 l i )  : We have 
an homomur-phism between quaternions and spatial rotation matrices and not an 
i,~oniory/zisn~. We remark that equations (22, 23) are known from spin l/2-algebra in 
quantum mechanics. Indeed, the basis elements 1. J ,  and K are real representations of 
- icr,. - icr, , - icr: 0,. I T , ,  cr: being the P a d i  .spin mutriws. Therehre quaternions of 
lcngth one can be considered as a real representation of  the group SU(2) (Special 
Unitary transformations in 2 dimensions). The rotation matrices D(6. @) represent thc 
group SO(3) (Special Orthogonal transformations in 3 dimensions). 'Special' means 
that the determinant of the matrices, representing the respective group. is equal t o  
one. 

We can now easily derive the relation between quaternion parameters and Euler 
angles. With help of this relation the Wigner functions in the expansion of the MPCF 
can be expressed b y  quaternion parameters. which will turn out to be very useful for 
the numerical calculation of the g-coefficients. Writing the Euler rotation matrix as 

we have the following relation for A' = Q'AQ:  

+ I  

(see Appendix B), and using equation (20) we have consequently 

This yields the desired relation between quaternion parameters and Euler angles: 
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The rotation matrix, D(a, f i ,  y ) ,  expressed in terms of quaternion parameters, denoted 
by the shorthand Q,  reads: 

i - 2(4: + 4:) 2(-qo% + 41%) 2(40q2 + 914,) 

2(qoct, + 4142) 1 - 2 ( d  + 4:)  2(- 4041 + 4243) (27) 

2(-404, + qlq3) 2(40q1 + 4243) 1 - + 4:) 

We now show how Wigner functions can be expressed in terms of quaternion 
parameters. The Wigner functions Di,,(a, f i ,  y )  can be written in the following form 
PI 

Di,,,(a, f i ,  Y )  = e""a~m,,(P)einY. 

The functions a;,,@) are given by [16] 

[(i + m)!(i - m)!(i + n)!O' - n)!]"2 

(j + rn - t)!(i - n - t)!t!(t + n - m)! d m , n ( f i )  = CC->"n-m 
t 

To express the Wigner functions in terms of quaternion parameters we follow ROSE 
[lo] and introduce the complex parameters a and b, 

a = qo + iq,, b = q2 + iq,, (30) 
where the quaternion parameters are given by equation (26). With those definitions, 
using the shorthand Q = (qO, q ,  , q2 ,  ql),  the following expression is obtained: 

[(j + m)!(j - m)!(j + n)!(j  - H ) ! ] " ~  

(j + m - t)!(j - n - r)!t!(t + n - m)! 1 
K,,,(Q) = CC - 

d-m-r(a*y-n-lbl+n-m (b*)'. 

This can be verified by straightforward insertion of the definitions for a and b, given 
in (30). 

3.3 An Algorithm for the Calculation of g-Coeficients 

As shown in 3.1, the main point in calculating g-coefficients for the irreducible 
representation of the MPCF from MD simulations is to evaluate a product of Wigner 
functions depending on the orientation of two molecules i and j .  The orientation of 
the molecules must be referred to a coordinate system in which the joining vector of 
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the two molecular centers &/is parallel to the z-axis. This can be accomplished in three 
steps: 

0. Start with the orientation parameters R , ,  R, of the two tnolecules and the joining 
vector p,, in thr: space fixed frame. 

Find the orientation parameters 0, of the joining vector R,, in the space fixed 
frame. 
Perform an orthogonal coordinate transformation in w-hich the z-axis of the new 
coordinate system coincides with the joining vector R,, ( i  - j-system) and cal- 
culate the orientation parameters Ri, 0,’ which refer to that ncuw coordinate 
system. 
Calculate the Wigner functions in terms of the n ~ w ’  orientation parameters R:resp. 

The central idea of this paper is to use quaternion parameters for the numerical 

in many MD programs quaternions can be directly accessed since they are used 
for the solution of the rotational equation of motion. 
quaternions can be easily referred to rotated coordinate systems, since a rotation 
of the coordinate system can be mapped on a simple quaternion multiplication, 
Wigner functions can be expressed conveniently in terms of quaternion par- 
ameters (see equation (31)). 

Following the steps for the calculation of the Wigner functions in the i - j-system. 
as listed above, we have first to find the quaternion parameters for the orthogonal 
transformation that rotates r*; on ~,,, which is the unit vcctor along I?v. From figure 
1 i t  can be seen that one possihle MWJ to perform such a rotation is to rotate about a 
rotation axis r&,. given by 

1 .  

2. 

3 .  
52,;. 

calculation of g-coefficients, because 

0 

0 

0 

Of, i f t i , ,  = -~ ( 1 . .  

and a rotation angle @ = n. From (20) the components of the corresponding quater- 
nion Q,, arc given by: 

Y,/.O = 0 ( 3 3 )  

4q.l = n g ,  (34) 

Y,,.? = nu ( 3 5 )  

Yi1.3 = f l y . : .  (36) 
Now we have to calculate the quaternions Q,’, Q,’, in the rotated coordinate system. 

For that purpose we start with two molecular fixed frames being identical with the 
space fixed frame and build up the orientation of molecule i and j by two succesive 
rotations: A first rotation that rotates the molecular fixed z-axis on G2,, and a second 
rotation that rotates the molecule to its final position. 

w4 1 = w w ( Q , /  1, (37 )  
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Figure 1 Rotation into the i - j system. 

As a consequence we have 
Qi = QLQ!. 

Q'. = Q Q'.. 
'I' 

J Y  

(39) 

(40) 

Having found the quaternion parameters Q: and Q;, the Wigner functions D;, .n, (Q, )  
resp. Di2.-nl(QJ) in equation (12) can be evaluated according to equation 31. 

4. ANEXAMPLE 

Here we apply the algorithm for the calculation of g-coefficients outlined above to 
methylene chloride (CH, C12). The molecules of methylene chloride have the geometry 
shown in figure 2. The characteristic bond lengths and angles are given in (41) 
according to [ I  I]. 

Y ~ - ~ ~  = 1.767 & 0.002A, 

rC-" = 1.085 0.002A, 

L,-,-,{ = 112.1 k 0 . 2 O ,  

L,-,-c/ = 112.2 k 0.l0. 

Methylene chloride has a permanent dipole moment of I .6 D in the gas phase [ 121. The 
dipole vector directs along the b-axis in figure 2. Due to the C,,-symmetry of the 
CH, Cl, molecule the iA:n, "I -coefficients vanish unless m ,  and mz are even numbers [ 5 ] ,  
if the z-axis is chosen to 6e the symmetry axis of the molecule. We show in figure 3 
the non-vanishing gA:,,m2 ,-coefficients for 1 = 0, I ,  2. The M D  simulation was carried 
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a 

Figure 2 Geomc tr)  of a C'H?('I: molcculc 

o u t  wi th  the program MDMPOL [13]. In MDMPOL a quaternion leapfrog algorithm 
[7. 131 is used for thc: solution of the rotational equation of motion. To be consistent 
with our definitions of the quaternion parameters and Euler angles we modified i n  
MDMPOL the formula for the rotation matrix in terms of  quaternion parameters (see 
equalion (77)) and thc formula for thc relation bctwccn the space fixed coordinate5 
o f  the angular velcity a n d  the time dcrivativcs o f  the quaternion parameters (bee 
equation (66). app. C)  [17]. 

I t  can be seen fiom figure 3 that the intramolecular structure of the ( ' H I (  I 
rnolecule plays an important role for orientational correlations. For example the 
gi.' I ,,-coefficient has the same order of magnitude a s  the <q&,-coefficent, whereas for 
linear molecules all y, "~,,:, -coefficients vanish unless 171, and in2 are equal to zero. A 
graphical description o f  the mutual orientation of the molecules can he obtained from 
the g-coetkients by introducing i n t o  equation (12)  the Wigner functions as explicit 
expressions, containing the Euler angles. Taking g:j,l\,(, ( r )  3 s  an example. the large peah 
above 4 A can thus be interpreted as resulting from preferred parallel orientations. 
whereas the negative region below 4 A indicates, that very close cms approach of two 
molecules can only be achieved by more antiparallel orientations. More detailed 
discussions of g-coetficients along such lines can be found for example in  references 
[6] and [ I  51. 

t.'inally a remark has t o  be made with respect t o  the precision o f  the g-coeficicnts 
calculated from M D  simulations. To obtain the statistical accuracy of normal atom 
pair correlation functions one has to use much more ML) conligurations for the 
calculation of g-coefficients: The configurational space which has to be 'scanned- 
while running through the MD configurations and filling up the g-histogram is given 
by all possible cms separation distances and all possible values of the five independent 
Euler angles describing the orientation of the molecules, whereas in the case of the 
atom pair correlation functions only the one dimensional space of the atom separa- 
tion distance has to be sampled. For our calculations we generally used 16000 M D  
configurations of I08 CH2CI,-molecules having a time distance of 20.f:~ (4 M D  time 
steps). An exception was made for theg:::,u-coefficient, which is identical with the cms 
pair correlation function: According to the above considerations it was sufficient to 

I 
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Figure 3 Some g-coefficients of CH, Cl,. 
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calculate this g-coefficient from 500 MD configuations to obtain a comparable statisti- 
cal accuracy. For 16000 MD configurations we need about one CPU hour on a CRAY 
XM-P with our program GCOEFF, which is vectorized in the most time consuming 
parts. The size of the 'error bars' in fig. 3 indicates the difference between the 'raw 
data' of the g-coeficients and the corresponding smoothed curves. The smoothing 
was done by empirical spectral filtering: We suppressed the higher frequcncies in the 
spectra of the g-coefficients in such a way that the resulting error bars had the same 
order of magnitude as the estimated statistical error. To estimate the statistical error 
we calculated some g-coefficients which should be zero due to thc molecular symmetry 
and looked at their average deviations from 7ero. 

APPENDIX 

A .  The General Form qf a Rotation Matrix 

We derive now the basic formula for a rotation matrix D(ti, @) in terms of the unit 
vector 6 along the rotation axis and the rotation angle @. D(n', @) is defined to be the 
rotation matrix which rotates the x-, y - ,  z-axis of a given coordinate system into the 
Y'-. y'-, ,-'-axis of a new coordinate system. Using the definition of the infintesimal 

y d  generators of rotations about the x-, y-. z-axis, L, - - 1 - D(C;, @,)I ( i  d4! 0, = n  
stands for s. j v ,  z ) ,  explicitly written as 

0 0 - i  

I,, = (r : Y 'i. Lj = 0 0 1. L.  = (K. I, ",. (42) 
0 - i  0 0 0  0 0  

the rotation matrix I)($, @) can be written in the following form: 

~ ( r i ,  m) = era+' = (cos @)I + ( I  - cos ~ ) r i  0 ri + i(sin ~ ) r i * L .  (43) 

Thc symbol '0' denotes the dyadic product. This form for D(6, @) can be easily 
obtained by expanding e'".'. in a power series and using the fact that 
(6*L)2 = 1 - ri 0 n' is a projector on the plane perpendicular to the rotation axis. 
From (43) and (42) it follows immediately that D(C, @) is an orthogonal matrix, 
having the property 

D- ' (n ' ,  @) = D'(n', 0) = D(-n', @) = D(n'. -a). (44) 
Due to the identity (iii*z)a' = riAa', a'being an arbitrary vector, it is immediately clear 
that D(n', @)n' = 6, i.e. n'is the unit vector along the rotation axis. Writing D(n', 0) in 
an explicit matrix form one obtaines from (43) 
[)(t i. CD) = ( 4 9  

n:, + cos @(/ - Y I ~ )  

n,n,.(l - cos @) + n, sin @ i nt + COS@(I -~ $1 
n , n , ( l  ~ cos @) i n, sin @ 

n l n , ( l  - cos @) - n, sin @ 

n,n,.(l ~ cos @) - w ,  sin @ n , n , ( I  -- cos @) + n, sin @ 

n,n:( l  - cos @) - ti ,  sin @ 

+ cos @ ( I  - nii 

I n  the cases of n' = gc, n' = GL,, n' = 6=, D(G, 0) reduces to the familiar rotation 
matrices describing rotations about the x-, y - ,  z-axis. 
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B. The Rotation Matrix in Terms of Euler Angles 

The form of a rotation matrix in terms of Euler angles can be found with (43) 
according to the definition of the Euler angles [8]: 

1 .  
2. 
3. 
corresponding rotation matrix D(a, h, 7): 

Rotation about the z-axis with angle a, 
Rotation about the f-axis ('line of nodes') with angle p, 
Rotation about the z"-axis ('figure axis') with angle y, from which we have for 

D(a, B, 7) = 3 >'Me', > P ? D ( L  4, (46) 
where 

It should be remarked that, instead of performing successive rotations about the z-, 
y'-, z"-axis with angles a, j3, y the same rotation is obtained by succesive rotations 
about the spucefixed z-, y-, z-axis with angles y, p, a: 

D(r,  8, Y) = a)D(e', 9 P>D(e', Y). (49) 

m a ,  B, Y> = (50) 

The explicit form for D(a, f l ,  y) reads 

i cosy cosg cosa - siny sina 

cosy cos ,!l sin a + cos o! sin y 

- cosy sinx - cosp cosa siny 

cosy cos r - cos f l  sin y sin a 

cosa sinp 

sin B sin x 

- cosy sinp siny sinb cos f l  

D-' (a .  f l ,  y )  = D ( a .  p, y) = D(-y,  - p ,  -a) .  (51) 

i 
The inverse matrix of D(a, f i ,  y) is obtained by using eqs. (44), and (49): 

C. Angular Velocity 

In the following we list thc relations between the time derivatives of the Euler angles 
and quaternion parameters as defined above and the components of the angular 
velocity in the space fixed and body fixed coordinate system. All formulas were 
generated with the algebraic programming system REDUCE [14]. We used the 
relation between the body fixed components of the angular velocity and the time 

*derivatives of the quaternion parameters together with (27) to modify the quaternion 
leap-frog algorithm implemented in MDMPOL [13] with respect to the calculation of 
Wigner functions according to eqs. (26) and (31). All other relations are listed for 
reasons of completeness. 

Starting from the orthogonality relation for a general rotation matrix depending on 
the time t ,  

D'D = DD'  = 1, (52) 
we have by differentiating with respect to t :  
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L i  
dt 

d 
cir 

-((L)'D) = D'D + D ' D  = D'D + (D'D)'  = 0 ( 5 3 )  

-(DD') = D n !  + OD' = (DD'Y + DD' = 0 (54) 

We see that D'D and D D' are both untisynzmerric matrices: 

Q D'D r -a! ' I  1 (551 

R, & D.' = ~ n:. ( 5 6 )  

To get some insighr in the physical meaning of Q,, and Qh we define D to be the 
transformation matrix wich rotates the space fixed coordinate system into the body 
fixed coordinate system. Using that the components of a vector .r and the basis vectors 
themselves transform contrugredimflis. we have (a prime denotes the body fixed 
frame): 

f = D.?, .? = D ' Y .  ( 5 7 )  

Differentiating .f and 2' with respect to t and using ( 5 5 )  and (56) yields: 

.< = D(2 '  + Q,.?). ( 5 8 )  

(59! 

Q,,.? = &'A,?'. Rh.f = ti) A f, (60) 

* I  

-Y = or(.< - Qh.f). 

From this equations we have the following interpretation of R,, and Q,,: 

where (5 and h' denote the components of the angular velocity in the space fixed resp. 
body fixed frame. Written in components, R, and R, read: 

From (55). (56), and (61) the relation between the components of angular velocity and 
the time derivatives of the Euler angles resp. quatcrnion parameters can be calculated 
by an algebraic programming system like REDUCE. We have the following ex- 
pressions for the relation between the components of  the angular velocity and the time 
derivatives of  the Eider angles: 

-cosy sin p sin 7 

(62) 

0' cos p 
0 -sina cosa sin[] 

( 6 3 )  

I 0  cos p 
Inversion of (62) and (63) yields: 
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cosy siny 

cotP cosy -cotP s h y  1 

-cotB cosa -ccotP sina 1 
cos M 

cos M sin a 
sin f i  sin f i  
- ~ 

For the relation between the components of the angular velocity and the time 
derivatives of the quaternion parameters one has: 

-42 -43 

Inversion of (66) and (67) yields: 

40 -41 -42 -43 

40 -41 -42 -43 

(69) 
- 43 

We remark that the zero component of the angular velocity in eqs. (66) and (67) is just 
the derivation of the identity q: + 4: + qf + 4: = 1 with respect to time. 
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