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Molecular-dynamics studies and neutron-scattering experiments on 
methylene chloride 

Part H: Dynamics 

by GERALD R. KNELLERt 
Institut ffir Physikalische Chemie der RWTH Aachen, Templergraben 59, D-5100 

Aachen, West Germany 

and ALFONS GEIGER 
Physikalische Chemie, Fachbereich Chemie der Universit~it Dortmund, Otto-Hahn- 

Strasse, D-4600 Dortmund, West Germany 

(Received 28 September 1989; accepted 21 December 1989) 

We calculate inelastic neutron-scattering intensities of methylene chloride 
for cold neutrons from molecular-dynamics (MD) simulations and compare 
them with experimental data. To obtain realistic scattering intensities, the effect 
of multiple scattering is taken into account by a Monte Carlo (MC) simulation, 
using the dynamic structure factor calculated from our MD simulations as 
input. The MD simulations of methylene chloride are performed with the same 
potentials as in Part I of this work. The dynamic structure factor is calculated 
using fast correlation algorithm (FCA), which is based on the fast-Fourier- 
transform (FFT) algorithm and the Wiener-Khinchin theorem for discrete 
functions. 

1. Introduction 

Neutron-scattering experiments cover the whole range in space and time acces- 
sible by molecular dynamics (MD) simulations and therefore provide unique experi- 
mental data to test the validity of such simulations. Usually 'idealized' scattering 
intensities are calculated from the simulations and compared with experimental 
results. The experimental intensities are corrected for effects not involving the inter- 
nal structure and dynamics of the sample, such as background scattering or detector 
efficiency, as well as for effects like multiple scattering, and (in the case of diffraction 
experiments) inelastic scattering that do require knowledge of space and time corre- 
lations of the sample. 

It is tempting to include these ' non-trivial' effects in the simulation process. 
Unfortunately, this method is limited since the dynamic structure factor, the basic 
quantity of interest, is calculated from MD trajectories by classical time averages, 
and, to account for detailed balance and recoil, a semiclassical correction with a 
limited validity concerning the momentum transfer q and energy transfer h~ has to 
be applied. 

In Part I of this work [1] we gave the bounds for the (q. to) region that can be 
covered by MD simulations of molecular liquids: 

Ituol < k s r ,  (1) 
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h2q 2 
E--M- ~ 2ka T. (2) 

M is the lowest effective mass of the atoms forming one molecule. We pointed out 
that, owing to these bounds, simulations of realistic neutron-diffraction experiments 
cannot be carried out for molecular liquids such as methylene chloride whose mol- 
ecules contain hydrogen atoms with low effective masses. For such liquids simula- 
tions of inelastic neutron-scattering spectra in the low-q region, where the conditions 
(1) and (2) are fulfilled, provide an additional useful test of M D  potentials. 

The procedure is then as follows. In the first step one has to calculate the 
dynamic structure factor ~(q,  to) from the M D  simulation data, which requires the 
computation of some 104 time correlation functions. In the second step a Monte 
Carlo (MC) simulation of multiple scattering and absorption of neutrons in the 
sample has to be appended, taking ~(q,  CO) from the M D  simulation as input. The 
second step is necessary, since, even if multiple scattering is reduced by experimental 
means, it can still be 20-30% of the total scattering intensity. 

In this paper we present simulations of inelastic neutron scattering spectra of 
CH2CI 2 . We use the experimental data of Brier and Perry [2] as reference, since 
they are suited with respect to (1) and (2). The details of the M D  simulations, in 

particular of the intermolecular M D  potentials, are described in [1]. 
To calculate the dynamic structure factor, we apply the 'fast correlation 

algorithm' (FCA), which is based on the fast Fourier transform (FFT) and the 
Wiener-Khinchin theorem for discrete periodic functions. This algorithm is 
extremely fast on vector computers, if FFT routines are available that are specially 
designed for the vector-computer architecture. 

2. The dynamic structure factor 

2.1. Basic relations 

The differential neutron-scattering cross-section of molecular liquids can be 
written as follows, splitting the dynamic structure factor ~(q,  co) into its coherent 
and incoherent parts: 

d2o " k 
d~  d-----E - N ~o [~coh(q, CO) 4- ~i,c(q, CO)]. (3) 

The energy transfer in the scattering process is given by hCO = E o - E, E o being the 
energy of the incident neutrons. Correspondingly, the momentum transfer is defined 
as hq = h Jk o - k  J. The coherent and incoherent dynamic structure factors are 
given by 

1 f _ ~ d t  Ae~ohfq, CO) = ~ e-i'~ t), (4) 

1 - - 

~-coh(q, t) = ~ E E b* b#(e-iq.  ~,(o) ein..,,(0>, (5) 
=,# i , j  

1 f_ dt e-i~t.~'inc(q, ~:in~(q, CO) = 2 - ~  t), (6) 

1 - -  - -  
~-i.~(q, t) = ~ ~ ( I  b~ 12 - f b~ 12)(e-in" ~,(o) etq. ~,(0) .  (7) 
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The quantities '~g'coh(q, t) and : lot(q,  t) are the coherent and incoherent intermediate 
scattering functions respectively. Latin subscripts denote molecules and greek sub- 
scripts atoms in one molecule. The total number of atoms is N - N m N a ,  where N m 

is the number of molecules and N,  the number of atoms in a single molecule. If we 
define D(q, t) and d~.,(q, t) to be the Fourier transforms of the weighted total 
particle density and the weighted single particle density, 

D(q ,  t) = Y. e iq' R.,,,,, (8) 

d.. :q, t) = (I b. 12 - I b. 12) 1/2 e iq" l~o), (9) 

then the coherent and incoherent intermediate scattering function can be written as 

~-coh(q, t) = (D( - -q ,  0)D(q, t)>, (10) 

1 
~-~or t ) = ~  ~ ( d , . , ( - q ,  O)d,, ~q, t)). (11) 

oE, i 

The thermal averages ( . . . ~  stand for Z -1 tr {e-PH. . .} ,  where Z = tr {e -0H} and 
fl = 1~ks T. To calculate the dynamic structure factor from M D  simulations, the 
quantum-mechanical thermal averages given above are approximated by time aver- 
ages over the M D  trajectories, generated according to the laws of classical mecha- 
nics. In this picture the particle densities are no longer operators but rather ordinary 
functions depending on the positions of the atoms. We see from (10) and (11) that 
the coherent part of the intermediate scattering function is a single q-dependent time 
correlation function, whereas the incoherent part is the average over N q-dependent 
time correlation functions. Because all atoms labelled by ~, i with �9 fixed and i 
running over all molecules are physically equivalent, ~-l,r t) can be written as 

.~i.c(q, t) = 1__ ~ (d,. l ( - q ,  0)dr. t(q, t)), (12) 
Na a 

summing only over the atoms of an arbitrary tagged molecule. From the computa- 
tional point of view it is better to use (11), since averaging over all equivalent atoms 
reduces the statistical error considerably. 

A fundamental relation that is fulfilled by the dynamic structure factor is the 
relation of detailed balance [3, 4]: 

~(q,  co) -- e#~'~(q, -co). (13) 

As an immediate consequence, the even and odd parts of : ( q ,  co), given by 

..~(+)(q, co) = �89 + e-#M')..~(q, co), (14) 

~'(-'(q, co) = �89 - e-Ph~)~(q, co), (15) 

are related by 

6e(-)(q, co) = tanh ({Bkco)Ae(+)(q, co). (16) 

In the classical limit (h --+ O) the dynamic structure factor is an even function in co [5] 
and all odd moments of ~(q, co), defined by 

f.~dcoco2,+ l~(q ,  (co2.+,> _ ,o), (17) 
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vanish. In this context we refer to a publication of Van Hove [6] in which it is shown 
that the imaginary part of the correlation function f#(r, t), defined as the Fourier 
transform of the dynamic structure factor with respect to time and space, can be 
related to the local disturbance of the microscopic particle density caused by the 
neutron during the scattering process. In the classical limit f~(r, t) is a real even 
function in t, and consequently $e(q, to) is an even function in co. We see that 
calculating the dynamic structure factor according to classical mechanics means 
neglecting the influence of the neutron on the target during the scattering process. 

To correct a dynamic structure factor ~ ( q ,  to) that has been calculated from a 
classical ensemble or time average for detailed balance, several semiclassical correc- 
tion methods have been proposed [7-9]. The most common method is that of 
Schofield [7]: 

~(q, to) = e#~/2~9'cl(q, co), (18) 

~-(q, t) = ~-~(q, t -- �89 (19) 

We used the method of Lovesey [4], which is also easy to implement: 

/~hco 
Ae(q, co) - 1 -- e -#h'~ A"~l(q, co), (20) 

0 
.~'(q, t) -- : :(q,  --t) = --iflh ~ :-o~(q, t). (21) 

This correction method has the advantage that at least the first moment, called the 
recoil moment, of the corrected dynamic structure factor is exact, whereas Scho- 
field's correction method yields a recoil moment that is only correct up to first order 
in h [10]. The recoil moment does not depend on the interaction potentials between 
the molecules and is equal to the energy transferred from the neutron to the target 
in a scattering process, if the target is at rest before the collision. Both semiclassical 
correction methods, by construction, ensure detailed balance of the corrected 
dynamic structure factor and are valid in the (q, co) region given in (1) and (2) [10]. 

2.2. Efficient calculation of the dynamic structure factor from MD simulations 

We now discuss the efficient calculation of the dynamic structure factor ~c~(q, co) 
from MD simulations. As is clear from (11), the most time-consuming part is the 
calculation of the incoherent intermediate scattering function, since we have to 
average over N ~ 100-1000 single-particle density correlation functions to obtain 
maximum statistical accuracy. 

The general scheme for the calculation of ~-cou(q, t) from MD simulations has 
already been given in [1] in the context of the computation of the coherent intermo- 
lecular structure factor from the Fourier-transformed particle density ('direct 
method'). The same scheme applies to the computation of ~-~(q,  t)--merely an 
additional averaging over the single-particle correlation functions has to be per- 
formed. If Nt is the number of MD configurations on the equidistant discrete time 
scale t = m At, given by the MD simulhtion, then we write explicitly, abbreviating 
m At by m etc., 

~'~oh(q, m) ~ (O(--q,  0)O(q, m))~l 

1 n , - , , , -  ~ 
D(--q, k)D(q, k + m), (22) 

- N , -  m k = o  
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1 
.~",,c(q, m) ~ ~ ~ <d~,. ,.(- q, O)d,. ,.(q, t)>c, 

�9 , i 

, [ , ' - '  ] 
= - -  ~ - ~ d,. ~ - q ,  k)d,. lq ,  k + m) . (23) 

N N t m ~=o 

The index m runs from 0 to N t - 1, and we have ~J-(q, m ) =  o~'(-q,  Iml) for 
m ~ [ - N t  + 1, - 1 ] .  To calculate the discrete-time correlation functions, one can 
make use of the discrete form of the Wiener-Khinchin theorem [11"]: 

For an arbitrary complex discrete signal u(k), k r [0, N~ - 1], the estimate C,(m) of 
its time autocorrelation function, defined by 

f 1 /%-m- l ~., u*(k)u(k + m) for m r [0, N t -- 1], (24) 
C . ( m )  = N ,  - m kff io  

C*(Iml) ,  for m ~ [ - - N f  + 1, - 1 1 ,  

can be written in the form, for m ~ [ - N  t + 1, N t - 1], 

1 12N ' -1  ( 2 ~ )  
C.(m) - Nt _ I ml 2Nf ,,=o ~ exp i ~ mn [ O(n)12, (25) 

where 

2N'-' ( 2~ ) 
O(n)-  ~ exp - i  nk U(k) (26) 

is the discrete Fourier transform of the function U(k), which is identical with u(k) for 
k v [0, N, - 1], but padded with N t zeros, i.e. U(k) = 0 for k ~ [Nt, 2N, - 1]. 

Since u(k) has to be regarded as an equidistant sampled signal of finite length of 
a function u(t), t ~ [ - o o ,  + ov], the zero-padding in U(k) is necessary to avoid 
spurious correlations. With respect to (22) and (23), the finite length is simply given 
by the length of the simulation run. It should be remarked that U(k) and O(n) are 
periodic with period 2N t . 

If the fast-Fourier-transform algorithm (FFT) is used to perform the discrete for- 
ward and backward Fourier transform in (25), one obtains a speed up of O(2Nt log2 
2Nt) operations (multiplications) against O(N~) operations required for the direct 
method according to (24). This method is usually referred to as fast correlation 
algorithm (FCA). The use of highly vectorized assembler routines for FFTs on 
vector computers gives an additional improvement--in the case of a Cray XM-P an 
additional speed-up factor of approximately 5-7 [10]. Despite the fact that the FCA 
is well known (see e.g. [12]), and also that some publications in the field of molecu- 
lar dynamics have pointed out its usefulness [13-15], it is not a common tool in the 
analysis of MD simulations. We emphasize that (25) expresses a mathematical iden- 
tity and does not involve any ' truncation errors ' -- i t  is merely another way of 
writing C,(m), and can be used to calculate time correlation functions efficiently. To 
handle the input/output for the application of the FCA in a convenient manner, we 
have developed a small package of subroutines that makes it possible to treat large 
datasets as 'matrices' ,  with buffered I/(3 operations on ' rows '  (e.g. coordinates/ 
velocities of all particles at one time step) and 'columns '  (e.g. the coordinates/ 
velocities of one particle at all time steps) [ 10]. 

Although (25) shows that the power spectrum of the input signal u(k) could be 
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estimated by I 0(n)[ 2, for all practical purposes spectral smoothing has to be per- 
formed. Thismeans that (25) has t o b e  used only as a 'trick' to calculate correlation 
functions efficiently, and spectral smoothing has to be performed afterwards in a 
separate process. We did this by multiplying the incoherent scattering functions by a 
Gauss window [16] before performing the Fourier transform to get the correspond- 
ing dynamic structure factors according to (4) and (6). 

3. Multiple scattering 

Quantitative comparison between dynamic structure factors from neutron- 
scattering experiments and MD simulations requires consideration of the effect of 
multiple scattering and absorption in macroscopic specimens. It is well known that 
multiple-scattering intensities in inelastic neutron experiments are strongly depen- 
dent on the energy transfer between neutron and target and in principal cannot be 
subtracted from the measured neutron spectrum without knowing the dynamic 
structure factor, the quantity of interest itself [17-19]. To compare with the experi- 
mental data of Brier and Perry [2], we decided to take the total dynamic structure 
factor Se(q, 09) = 6ecoh(q, CO) + Seine(q, CO) from the MD simulation as input for an 
additional simulation of multiple-scattering and absorption effects, after applying 
the semiclassical correction formula (20). In an analogous manner the comparison 
between theoretical models for S~(q, CO) and experimental data in [2] has been done. 

We used the following approach to perform the simulations of multiple scat- 
tering and absorption [10]. Starting from the differential cross-section for inelastic 
neutron scattering given by (3), we rewrite it for the scattering process from a 
volume element dar in the form 

dZtr k 
d.O dE - p dar ~o 6~(q, CO), (27) 

where p is the average density of scatterers in the specimen and (k/ko)SP(q, CO) 
is simply the average differential scattering cross-section per atom in a small vol- 
ume element. The energy and momentum transfer are given by hCO = E o - E and 
hq = hi ko - kl. 

We now look at single scattering from a volume element d3rl, located at rl in a 
macroscopic specimen. The number of neutrons scattered from this volume element 
into a solid-angle element dQ and an energy interval dE around t) and E is given by 

k 
dI(l)(f~, E; rl) = p darl Jin(kO, rl) ~o Sa(q' CO) e-~(e)'lB dfl dE, (28) 

]in(kO; rl) =Jo e-~'(E~176 (29) 

where we denote byj~n(ko; ra) the current density of the unscattered neutrons in the 
direction of k o at the location r 1 of the volume element under consideration. The 
energy-dependent absorption coefficient p(E) is defined by/t(E) - p[2~s(E ) + 2~,(E)], 
where 2~,(E) is the total scattering cross-section and 2~,(E) the reaction cross- 
section. For the reaction cross-section the relation ~r(E) oc E-1/2 usually holds. The 
distances to1 and rib are the distances between entry point and scattering volume 
and between scattering volume and exit point of the neutrons. It should be noted 
that f~ describes the flight direction of the scattered neutrons with respect to k o. 
The total differential scattering cross-section of the macroscopic specimen for single 
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scattering is obtained from (28) and (29) by integration over the volume of the 
specimen and normalizing the result to Jo, d~  and dE: 

~ ~  - P ~ o o d 2 t y t l )  k fvd3rl e-U(E~176 +rls)S~l)(l-~, El rl), (30) 

S(1J(gZ, El rl) = $:(q, to) e -~ ' (~ 'B,  (31) 

with A~E) _-- ~E)  -- P(E0). 
Analogously to single scattering, we write for the number of neutrons scattered 

first at a volume element darl, located at r 1, and then at a second volume element 
d3r2, located at r 2 , the following: 

dI(2)(~, E; rl, r2) - -p  d3r2 jio(kl; rl, r2) 

kl 
j in (k l ;  r t ,  r2) = p d3 r l  j ia(ko;  r l )  7-- 

% 

k 
7 -  ~<P(q2,602) e-"(E~'2s d~  dE, 
Kx 

(32) 

e -#(s  2 
~'(ql, COl) 2 ~ r ' - -  h dco I. (33) 

The momentum transfers are given by ?u/l = h] ko - kl  I, hq2 = hi kl  - kl, and the 
energy transfers by ho~ 1 = Eo - El, hr = El -- E. Apart from the damping factor 
e -~(E1~''2, (33) follows from elementary scattering theory [4], taking the current 
density of the neutrons scattered from volume element darl as input current density 
for the second scattering event. The incoher, mt superposition of the current densities 
is valid under the assumption that the mean free path 2 of the neutrons is much 
larger than their coherence length ~c. This is a reasonable assumption since 2 is of 
the order of a few millimetres whereas 2c is of the order of 100 A. 

To obtain the differential cross-section for double scattering, we switch from the 
integration variables rl and r2 to rl and r12 = r 2 -  r~, and use spherical polar 
coordinates for the integration over rl2. With the same normalization as in the case 
of single scattering, we obtain 

d2u(2) _p2 k fV~L'2 ~ d3rl drl2 d~12 
d~ dE ~o o4~ 

e-~(EoX,o,+,~2+,~s)y2)(f~, El rl, r12, ~12)) (34) 
~Ed~ 

S(2)(f~, E Ir~, r12, [~12) = h J_ ~o dc~ c~ co2) e -ta#(~'~2+a~(~'2"J. (35) 

The upper limit LI2 on the integration over r~2 is the distance between r 1 and the 
boundary of the specimen in the direction of rl2. Expressions for higher-order 
multiple-scattering cross-sections can be obtained by straightforward generalization 
of (34) and (35). In this work we have neglected multiple scattering for orders higher 
than two. It should be noted that in the case of isotropic and elastic scattering, 
expressed by the relation At(q, to) = b26(h~o) (b is the average incoherent scattering 
length of the scatterers), the expression for the relation between double and single 
scattering of Blech and Averbach [20] can be retrieved from (30), (31) and (34), (35). 

To perform the numerical calculation of inelastic multiple-scattering intensities, 
we used a Monte Carlo (MC) method for the space integrations and a conventional 
'exact '  numerical integration method on a non-equidistant grid for the integration 
over the intermediate energy transfer hoJ t in (35). In this way the MC integration 
error with respect to ho~ could be eliminated. The distribution of the grid points 
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was chosen according to a Lorentz distribution, with a high density of grid points in 
the quasi-elastic region and a lower density in the inelastic region where the 
dynamic structure varies only very slowly [10]. The integration over t)12 was 
performed by importance sampling, using a distribution function proportional to 
S~_oo dmS(q(O, to = 0), to). 

4. Results and discussion 

As already mentioned in section 1, we have chosen the inelastic neutron- 
scattering intensities published by Brier and Perry [2] as reference data for our 
simulated scattering intensities of CH2CI 2 . The experimental data are time-of-flight 
(TOF) spectra, obtained from the IN5 spectrometer at the high-flux reactor of the 
Institut Laue-Langevin, Grenoble, France. We report the most important para- 
meters of the experimental setup according to [2]: 

(i) the energy of the incident neutrons E o was 1.326 meV, which corresponds to 
a wavelength of 2o = 8 A and a time of flight Zo = 2055 ~ts m -  1; 

(ii) the energy resolution AE was 50 ~teV (full width at half-maximum); 

(iii) (sample geometry) the sample was contained in a thin-walled (0.05 cm) alu- 
minium cell of 5 cm x 5 cm area and 0.032cm thickness, excluding the 
walls; 

(iv) (orientation of  sample) the sample was set at 45 ~ with respect to the incident 
neutron beam, and the experiment was performed in transmission geometry; 

(v) the detector angles were 35 ~ 53-8 ~ 73 ~ and 88-4 ~ 

To calculate the high-resolution scattering intensities from MD trajectories, we 
performed a MD simulation of 320 ps real time--corresponding to 65 536 steps of 
5 fs--for a system of 108 CH2C12 molecules in a cubic simulation box of 22.56A box 
length. The details of the MD simulation are presented in section 2 of [1]. As in [1] 
the MD potentials that we used for our simulations are those of Ferrario and 
Evans, referred to as (A) [211 and B6hm and Ahlrichs, referred to as (B) [22]. The 
analysis file contained 8192 configurations with a time distance of eight MD steps, 
i.r 40fs. In this way a resolution AE = 6.3 ~teV in the unsmoothed dynamic struc- 
ture factor could be obtained. The maximum energy transfer accessible according to 
time distance of the dumped configurations is htom~,, = 100meV, corresponding to a 
TOF of 225 i~sm -~. To smooth the dynamic structure factor, we used a Gauss 
window [16] with exactly the same spectral resolution as in the experimental data. 

The neutron-scattering intensities presented by Brier and Perry [2] are corrected 
for the detector efficiency, but not for multiple scattering and absorption. To 
compare our simulated scattering intensities with the experimental data, we per- 
formed the simulation of multiple scattering and absorption as described in section 
3. The actual calculation was done with the program MSDYN2 [10]. Since the flux 
of the incident neutrons is not given in [2], the comparison between experiment and 
simulation was done on an arbitrary intensity scale. We scaled the intensities in such 
a way that the quasi-elastic peaks had the same height. Concerning the representa- 
tion of the TOF-spectra in figures 1-4, it should be noted that the conversion of the 
inelastic scattering intensities from the (O, to) scale to the (O, ~) scale has to be 
performed using the formula 

d2o - d2o - 
d~  d--'--~ oc E a/2 dfl d - ' - ' ~  ' (36) 
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E = -2 .  (37) 

If the time of flight ~ is measured in I~s m -  ~ and the energy E = E o - hco in meV, 
the conversion from the energy scale to the TOF scale is made using �9 = 2285E- 1/2. 

We see from figures 1-4 that the simulated TOF spectra are qualitatively correct 
for both M D  potentials. However, both potentials underestimate the intensities in 
the region of inelastic scattering, corresponding to shorter flight times, and the 
width of the quasi-elastic line for higher detector angles. It is obvious that multiple- 
scattering effects have to be considered in order to make quantitative comparisons 
between experiment and simulation. 
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Figure 1. Experimental and simulated TOE spectra for O = 35"0 ~ (A) and (B) refer to the 

MD potentials of Ferrario and Evans [21] and B6hm and Ahlrichs [22] respectively. 
Squares are experimental points; solid lines represent from top to bottom, total, single 
and double scattering intensity. 
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Figure 2. As figure l, but for O = 53-8 ~ 

The discrepancy between simulated and experimental spectra in the inelastic 
region is probably due to the fact that for the simulated liquids the ' cage' of nearest 
neighbours in which a central molecule performs strongly damped oscillatory 
motions is not as stable as in the real liquid. The cage effect produces the character- 
istic overdamped oscillations of the VACFs shown in figure 5, which is reflected in 
the broad frequency band between about 2 meV and about 20 meV in their Fourier 
transforms (see figure 6). This frequency interval can be converted into 
500~tsm -1 ~< z ~ 16001asm-k We should point out that comparison between the 
Fourier transforms of the single-atom VACFs and the TOF scattering intensities is 
quite straightforward, since, owing to the anomalously high incoherent scattering 
cross-section of the hydrogens, we have approximately [23] (see figure 7): 



M D  and neutron scattering fo r  CH2CI 2 . Part  l I  475 

m 

g 

2"0 

1.5 

1.0 

0-5 

0-0 
0 

o o 
o 

o o 

o ~ D 

2 %o 
o / ~  o oH r 
o / _ ~  ~ 4//  

500 1000 1500 2000 
TOF//a.$ m- I 

(A) 

g 
g 

R 

E 

2.0 

1.5 

I-0 

0,5 

0"0 
0 

o [3 

o Q 

o ~ o o 

o / ~  % ~  ,~ 

c ~  o 

I - 

500 1000 1500 2000 

TOF/p.s m- I 

(13) 
Figure 3. As figure 1, but for O = 73.0 ~ 

lira ~ ~i.c(q, m) oc dt ei'~'(vn(0) �9 vn(t)>. (38) 
q - * O  

Because of (36) and (3), we get for E >> E o or ~o ~ - -E/h 

d2t7 
d ~  dT oc to2..~inc(q, to). (39) 

It should be kept in mind that the momentum transfer is a function of the energy E 
for a given scattering angle O, which can be approximated for E >> Eo by 

0.6945E 1/2 

q "~ 1 + (Eo/E) ~/2 c o s  0 ' (40)  
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Figure 4. As figure 1, but for O = 88"4 ~ 

if q is measured in A-a  and E in meV. Comparison between the scattering inten- 
sities produced with potentials (A) and (B) shows that the B intensities are a little bit 
closer to reality in the inelastic region, which in fact is reflected in a narrower 
frequency band in the spectra of the hydrogen VACFs and therefore a more pro- 
nounced cage effect. We emphasize that intramolecular vibrations can be neglected 
in the (q, to) region covered by the experiment of Brier and Perry [2] since we have 
approximately the following bounds for the relevant contributions to the scattering 
intensities: 0 A < q < 5 A -  t and I hto I < 30 meV. Therefore the Debye-WaUer 
factors are in good approximation equal to one [21  and we have no vibrational 
contributions in the spectrum, because the lowest frequency from intramolecular 
vibrations can be seen at to = 35.1 meV [24]. 
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(b) 
Single-atom velocity autocorrelation functions. (A) and (B) refer to the M D  poten- 

tials of  Ferrario and Evans [21] and B6hm and Ahlrichs [22] respectively. 
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Power spectra of single-atom velocities. (A) and (B) refer to the MD potentials of 
Ferrario and Evans [21] and B6hm and Ahlrichs [22] respectively. 
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Figure 7. Incoherent dynamic structure factor and power spectrum of hydrogen velocities. 

The limit q ~ 0 is approximated by taking the smallest possible value for q, given by 
q = 2g /L  = 0-278 A -  1 where L is the size of the MD box. (A) and (B) refer to the MD 
potentials of Ferrario and Evans [21] and B6hm and Ahlrichs [22] respectively. 
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Figure 8. Mean-square displacement (r2>(t) of hydrogen (a) and incoherent intermediate 
scattering function ~ri,c(q, t)/~i.c(q, 0) (b). (A) and (B) refer to the MD potentials of 
Ferrario and Evans 1-21] and Brhm and Ahlrichs 1-22] respectively. 

Looking at the quasi-elastic lines of the simulated spectra at O = 35 ~ or q ,~ 
0.5 A-1,  where it is almost only translational diffusion that can be seen, we find the 
quasi-elastic line reproduced quite well by both potentials. Brier and Perry I-2] find 
a diffusion coefficient of 3.3 x 10- 5 cm 2 s-  1 by deconvolution of the measured spec- 
trum. We calculated the translational diffusion coefficient D t from the mean-square 
displacement of the hydrogens and from the incoherent intermediate scattering 
function for the smallest q vector (figure 8), using the fact that, to a very good 
a p p r o x i m a t i o n ,  ~  0 oc e -D'~2'. We find consistently D t = 2.7(2.8) 
x 10-Scm2s -1 for  potential A and D t = 2.3(2.4) x 10-Scm2s - I  for potential B. 

The reason why the discrepancy with respect to the value found by Brier and Perry 
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[2] does not show up in different widths of the quasi-elastic lines is the influence of 
the spectral window. The latter has a width of 50 peV, which is not small compared 
with the total width of the quasi-elastic line at O = 35 ~ In this way, differences in 
the peak width are smoothed considerably by convolution of the ' ideal '  quasi- 
elastic line with the spectral window. Diffusion coefficients for CH2C12 measured by 
NMR at T = 300K are given in the literature: D t = 3-8 x 10-Scm2s - t  is found by 
Rothschild [25] and D t = 3-7 x 10 -s  cm 2 s-  t by O'Reilly [26]. 

At higher scattering angles and momentum transfers the deviation in the width 
of the quasi-elastic fine between simulated and experimental spectra becomes more 
pronounced. Here the rotational diffusion is dominating. One finds consistently that 
the correlation time corresponding to one of the axis involving H atoms, the H - H  
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Reorientational correlation functions c2(t ). (A) and (B) refer to the MD potentials 
of Ferrario and Evans [-21] and B6hm and Ahlrichs [22] respectively. 
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vector axis, is larger than the value found from N M R  (see the table- - the  experimen- 
tal values are taken from [2]). We recall at this point that almost only the H atoms 
are ' s e e n '  by the neutrons. The correlation times z~o and z in the table are defined 
by 1/z ~ - lim,_,~ [ - ( d / d 0  In c2(t) ] and z =- S~ dtc2(t), where the reorientational 
correlation function c2(t) is shown in figure 9. We conclude that both of the M D  
potentials used in our present work give a reasonable description of liquid CH2C12, 
especially concerning the structure, but have some deficiencies with respect to repro- 
duction of its dynamic behaviour. The 'cage effect '  and diffusive motion are under- 
estimated. 

Reorientational correlation times for CH2C12. 

Axis Potential z| z/ps zNm/PS 

C-CI (A) 1.22 _+ 0.06 0-94 ___ 0.05 1.20 + 0.10 
(B) 1.32 _ 0.07 0.94 _ 0-05 1.20 _ 0.10 

C-H (A) 1-08 + 0.05 0.68 +__ 0.03 0.70 _+ 0.07 
(B) 1.25 _ 0-06 0.67 _ 0.03 0.70 _ 0-07 

H-H (A) 1.13 + 0.06 0.70 +_ 0.04 0.53 +__ 0.06 
(B) 1.35 _ 0.07 0.67 +__ 0.03 0.53 +__ 0.06 
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