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1 Introduction

It is generally accepted that the unusual properties of water are largely due to the structure and
dynamics of its hydrogen-bond network [1,2,3]. There has been much speculation about its con-
nectivity pattern, but unfortunately there is no possibility to observe the hydrogen-bond network
directly by experiments. This dilemma can be overcome by using realistic computer simulations
[4]. Such calculations reveal the picture of an infinite random network, which is subject to con-
tinuous and rapid restructuring [5]. Fig. 1 gives a characteristic grafical representation of the
hydrogen-bond network, obtained from a molecular dynamics simulation.

NS
>

A b, 8

T

Figure 1: Illustration of the hydrogen-bond network. Configuration of 216 water molecules in a
periodic box.

It is possible to describe the connectivity of this random network quantitatively by using lattice
percolation theory [6,7,14]. By studying the changes that are produced by varying temperature and
density, one can contribute to the understanding of various effects observed in metastable water
and aqueous solutions.
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2 Molecular dynamics simulations outline

In the following, we discuss the results of two series of molecular dynamics simulations. In one
series, the density is kept fixed at ¢ = 1.0g/cm?® and the temperature is varied in eight steps from
287 to 235 K. In the other, at an approximately constant temperature of T = 273 K, the density is
varied stepwise from p = 1.0g/cm? to 0.7g/cm® .

We compare the results of these ’supercooling’ and ’stretching’ series with a simulation of 'nor-
mal’ water at ¢ = 1.0g/em® and T = 284 K. In all cases we performed constant energy and constant
density (N,V,E) simulations [8] for systems of 216 water molecules which interact via an ST2 pair
potential [9]. The direct molecular interactions up to the cutoff distance r. = 7.84 were combined
with a reaction field approximation for more distant parts of the system [10]. Before the actual
simulations were started, equilibration runs were applied, which extended up to 300 ps as the sys-
tems became more viscous with decreasing temperature or density. For more details see refs. [11]

and [12]. -
-

The interaction of water molecules is described by a continuous potential surface, which does
not allow us to distinguish naturally between 'broken’ and ’intact’ hydrogen bonds. It is more
appropriate to think of a smooth unimodal distribution of strong, weak and non-existing hydrogen
bonds. To treat such systems with traditional bond percolation theory [2,13], where an unambiguous
definition of an intact bond is necessary, the following approach has proven to be very successful.

To start, a reasonable and practicable definition is imposed: two molecules i and j are considered
to be hydrogen-bonded whenever their interaction energy V;; is below a negative threshold value
Vup and their mutual oxygen-oxygen separation is less than 3.5 A. The arbitrary value Vi p is then
varied gradually from strongly negative values, close to the absolute minimum of the interaction
potential, up to values close to zero [5,7]. In this way, we can observe the connectivity pattern
produced by the strongest bonds and the growth of the network, as weaker and weaker bonds are
included.

First, only few bonds will be found, the average number of hydrogen-bonds per water molecule
ngp will be close to zero, and only very small aggregates of connected molecules will be observed.
With increasing (less negative) Vg, nyp will increase, as will the number of the hydrogen-bonded
aggregates and their average size S. When Vyp approaches zero, ngp approaches values close to
four; the bonds will then form a totally connected, spacefilling network. At some intermediate value
of Vyp a bond percolation threshold, where the ’infinite’ network appears for the first time, will
have been passed.

3 Hydrogen-bond definition
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Figure 2: Average number of hydrogen-bonds ngp per water molecule as function of energy thresh-
old VHB-

A quantitative description of the behaviour outlined above is given in the following figures for
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the system at T = 284 K and ¢ = 1.0g/cm?®. Fig. 2 shows ngp as a function of the threshold value
Vip in units of the ST2-parameter € = 0.317.J /mole.

As one can see, for very strict definitions only few (strong) hydrogen-bonds are found, whereas
for Vg p values close to zero nyp even exceeds the value of four which one expects from crystalline
ice. This indicates the presence of ’bifurcated’ H-bonds, at least according to the above definition
and if weak bonds are also considered.

4 Hydrogen-bonds in normal water

Assuming independent forming and breaking of H-bonds on a lattice of four-bonded water molecules,
one expects a mole fraction of ;
fi = (pi(1-p)*? (1)

water molecules, which have exactly j bonds. p is the bond forming probability.

N

Figure 3: Fraction f; of water molecules with j intact H-bonds (j = 0 ... §). Circles: MD results,
full line: binomial distribution.

In Fig. 3 the circles show values of f;, obtained from the MD simulation for various choices
of Vi, plotted against the average number of H-bonds ngp (Virs). The full lines represent the
binomial distribution, eq. (1), with p = ngp/4. Up to ngp ~ 3, one observes very good agreement,
whereas for larger nzp, when weak H-bonds are also permitted, increasing deviations are observed.
This is due to the appearance of five-bonded water molecules.

In a next step, we study larger molecular aggregates. We distinguish between bond-networks
of water molecules and aggregations of four-bonded molecules, which we call clusiers. As the
assumption of independent breaking of bonds on an ice lattice works well for f;, the occurance
nrobability of small to medium-sized networks and clusters can be calculated by combination theory

. As an example, the probability of finding clusters of three connected four-bonded molecules

\(v‘veight fraction of water molecules, belonging to such clusters) is given by

WS = 18p'%(1 - ps)s (2

and the corresponding values from the simulation are compared in Fig. 4.

The plot is equivalent to Fig. 3, with p = nygp(Vyp)/4. Again, a very good agreement is
observed, although a small but systematic deviation is present, which will be discussed later. The
bell shape of the curve, which one observes for all W;,, can be understood as follows: Starting with
a very strict definition and gradually relaxing it, we find at first few aggregates of a given size
n, which multiply with increasing ngp(Vyp). Finally, there will be many of these networks and
clusters, which start to merge, thus decreasing again W,.

When approaching the percolation threshold, the size of the aggregates increases strongly. For
large aggregates the probability W,, can no more be given analytically (at least, when an underlieing
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Figure 4: Fraction W of water molecules, which belong to clusters of three four-bonded molecules.

ice lattice topology is assumed), but close to the percolation point, the average network or cluster
size and related properties can be described by critical behavior type equations. As an example
in Fig. 5a the 'spanning length’ L of bond networks (and clusters) is shown. L is defined as tigy)
difference between the maximum and minimum oxygen coordinates of the networks with respect
to some arbitrary coordinate direction. L changes in the vicinity of the percolation threshold nig

like
L~ |ngp—nypl™". (3)

In Fig. 5b the fraction of molecules, belonging to 'infinite’ clusters P, is shown for two slightly
different H-bond definitions (see [6]). This 'order parameter’ of the percolation transition behaves

like
Pu ~ nars — iz’ @
In accord with lattice percolation theory, we can use for njp the values 1.55 and 3.18 for

networks and clusters respectively. The straight lines in Figs. 5a,b have been drawn with a slope

0.75
and 8 = 0.38,

v

as predicted by lattice percolation theory [6]. The very good fit of the simulation data is obvious.
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Figure 5: (a) Average length of bond networks and clusters. (b) Fraction of molecules which belong
to spanning clusters.

The ramified networks close to the percolation threshold can be described as fractals, which
means that the mass distribution in a percolating network is such that the number of particles N,
which are found within a sphere of radius r around some reference particle is
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N(r)~r%, (5)

A so called 'hyperscaling hypothesis’ suggests for the fractal dimension d; a value which is
determined by the discussed critical exponents (D=3 is the Euclidian dimension) [13]:

dy =D —B/v. (6)

With the values given above, we expect dy = 2.49. To determine d; via eq. (5), systems of
216 particles are not sufficient. Therefore we simulated a system of 1728 water molecules, but even
with this size only a hint for the appropriateness of eq. (6) can be given [26].

In Fig. 6a, the derivative of N(r) viz. the average number of molecules c(r) within spherical
shells is shown for networks of size 850 to 900 close to the bond percolation threshold ngp = 1.55.
To remedy the limitations of our finite size system, we determine the slope d; —1 for various network
sizes N and plot dy vs. N~!. Fig. 6b reveals that our results from a finite system simulation at
least do not contradict the prediction of eq. (6).
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Figure 6: (a) Radial distribution c(r) of water molecules, which belong to same network. (b) Fractal
dimension: slope dy — 1 for various network sizes N.

5 Temperature and density dependence of hydrogen-bond
network topology.

Fig. 4a revealed very small, but systematic deviations between the prediction from combination
theory and the MD results. Now we discuss possible reasons for these deviations. As an example
we plot in Fig. 7 these differences for the previously discussed clusters of size three:

—/ AW3(p) = W3(p) — W3 ap(P) (M
where W5(p) is given by eq. (2) and Wy 5, (p) are the MD values.

An important difference between the pure temperature effect at constant density (Fig. T7a),
and the pure density effect at constant temperature (Fig. 7b) can be seen. The influence of the
temperature can be scaled out: by plotting vs. the average number of H-bonds, all difference curves
fall on top of each other. In contrast, the difference AW,, diminishes with decreasing density and
seems to vanish over the total range of p within the given numerical accuracy at ¢ &~ 0.8g/cm®.
Of course, the average number of H-bonds changes (increases) with decreasing temperature and
density [11,12], and by that also the occurance probability of the networks, but apparently this
effect can be scaled out in one case, but not in the other.

This can be explained as follows: the observed differences occure, because the topology of the
H-bond network in the liquid is not the ice lattice topology, and in particular, there are deviations
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Figure 7: Difference between cluster size distribution in MD simulation and prediction of percolation
theory (a) temperature dependence, (b) density dependence.

from the perfect local fourbondedness. If medium to weak H-bonds are also considered, there maggy/
be molecules with five H-bonds, as discussed before. Changes of the temperature do not primarily
change the topology, but only the thermal excitation of molecular motions. This leads to changes
in p and W, at fixed Vgp, which can be scaled out: by just changing the definition value Viyp to
bring p back to its old value, exactly the same network picture appears.

In contrast to that, the applied density decrease also changes the topology. As one can see in
Fig. 8, the mole fraction of molecules which have more than four bonds decreases with decreasing
density, even when very weak H-bonds are allowed.
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Figure 8: Mole fraction of water molecules with more than four H-bonds (for various H-bond
definitions).

The local connectivity approaches a more perfect tetrafunctional local arrangement (as assumeéw.’/
for the derivation of the W, [7]).

6 Structure of low density metastable water

In the previous section, only topological properties of the H-bond network have been discussed. We
now consider the structural (geometrical) changes, which are observed as density decreases. This
is of special interest, because of a conjectured limit of stability (spinodal) of 'stretched’ water [15],
which was estimated to be at a negative pressure of roughly -200 MPa and a density of ¢ ~ 0.8g/cm®
for the temperature of our simulation series (T' =~ 273K).

In fact, there are a number of observations which indicate the disintegration of the bulk water
system at the above given conditions. Fig. 10 gives the virial, calculated from the pair interaction
forces (without cutoff correction). A decrease of the pressure at high densities ends at a pressure
of about -200 MPa, when the density 0.75g/cm?® is reached. Although these numbers can only be
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Figure 9: (a) Line of mechanical stability limit for metastable water, (b) specific volume at the
limit of stability. Both according to Speedy [15].

considered as rough estimates, they are consistent with Speedy’s conjecture [15].
—/ I

Figure 10: Decrease of pressure virial with density.

Fig. 11a gives a graphical description of the local density fluctuations in water at different global
densities p. To get these pictures, the simulation box is cross-sectioned by an arbitrarily positioned,
finely meshed plane. Then, each mesh point, which is closer than 2.54 to any water oxygen in the
system is marked by a cross. Thus the empty white areas in Fig. 1la indicate cavities in the
water. As one can see, between 1.0 and 0.8g/cm?® the decreasing global density produces more,
but not larger cavities. But below 0.8g/cm? very large cavities occure, indicating the tendency for
decomposition. The presence of these large scale density fluctuations can be proven by calculating
the static structure factor

. 1 : v
—/ 5(Q) =< %;ezp(:qmj) > (8)
where R;; is the oxygen distance vector between molecules i and j. For scattering vectors
with |Q| > 1‘2}1_1, S(Q) has been calculated by Fourier-transforming the oxygen pair correlation
function goo(r) (see Fig. 13a). For smaller Q-values S(Q) is calculated directly from the sum in eq.
(8). The smallest accessible wave vector is @1 = 2x/L, where L is the simulation box size, which
varies between 18.6 and 21.0 A" for the different densities. As one can see from Fig. 11b, for
densities below 0.8g/cm?® a strong increase at small Q-values indicates the presence of large scale
density fluctuations.

The transition point from a homogeneous to a decomposing system with large density fluctua-
tions can be localized by considering the Voronoi polyhedra [17,16] which are obtained by using the
oxygens to describe the positions of the water molecules. Such Voronoi constructions are spacefill-
ing and uniquely partition the total volume between the molecules. Fig. 12a gives the distributions
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Figure 11: (a) Picture of the density fluctuations in low density water. (b) Structure factor $(Q).

of the Voronoi cell volumes at various densities. For higher densities these bell shaped curves are
symmetric. The maxima coincide with the averages (first moments) of the distributions and as the
Voronoi construction is spacefilling, the average shifts proportional to the global density chang”
(see Fig. 12b, crosses and circles for averages and maxima positions, respectively). \J
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Figure 12: (a) Volume distribution of Voronoi polyhedra. (b) Maximum position (o) and mean
value (+) of Voronoi distribution.

Below 0.8g/cm® the volume distribution becomes very unsymmetric, because polyhedra of large
size are occuring. These belong to molecules which are in the neighborhood of the large cavities.
At these low densities, a global density decrease only enlarges these cavities, but leaves the density
of the 'bulk’ unchanged. Therefore the maximum does not shift further. Thus, the divergence of
first moment and maximum position indicates the decomposition of the system into a ’bulk’ phase
and cavities [18]. This begins at ¢ = 0.8g/cm?, as one can see from Fig. 12b.

To understand the mechanisms that lead to the decomposition at this particular density -
¢ ~ 0.8g/cm®, we determine the number of first neighbors N(R;) by integrating over the first pe
of the oxygen-oxygen pair distribution function (Fig. 13a). Note, that the change of goo(r) with
density is very unusual: the oscillations of goo(r) become more pronounced and in particular the
height of the first peak increases with decreasing density. This demonstrates the development of a
more ordered structure with decreasing density. Also, the slight shift of the second peak to larger
distances indicates the formation of more linear hydrogen bonds.

It is well known that in the liquid at 1.0g/em® the water molecule has more than four nearest
neighbors (of course, the actual number depends on the upper integration limit). The shape of
N(R,), as shown in Fig. 13b, shows the same density dependence as the maximum positions
of the Voronoi volume distribution (Fig. 12b) and the mole fraction of water molecules with
more than four H-bonds (Fig. 8). Above and below 0.8g/cm?® the system reacts with two very
different mechanisms upon an imposed density decrease. Above 0.8g/cm? a global density decrease
is achieved by reducing the number of nearest neighbors. At about 0.8g/cm® a more ordered
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Figure 13: (a) Oxygen-Oxygen pair distribution function in low density water, (b) number of nearest
neighbors.

fucture with four nearest neighbors per water molecule is reached (see also the discussion of Fig.

). A further reduction of the density is then achieved by the formation of large holes. This is
energetically more favourable than to loosen the hydrogen-bonding interaction to one of the four
remaining nearest neighbors: By adopting a ’straddling’ orientation towards the cavity [12] (as this
is also known from hydrophobic hydration shells [19]), the water molecules are able to keep four
H-bonded neighbors, while reducing the density globally by the formation of cavities.

It is quite comprehensible that at this stage the system becomes very unstable with respect to
density fluctuations. This is a simple explanation for the location of the mechanical stability limit
at ¢ = 0.8g/cm?®, as suggested by Speedy [15].

In Fig. 14 the oxygen-hydrogen and hydrogen-hydrogen pair correlation functions gom(r) and
gum(r) are shown. The prominent peaks are characteristic for water and are produced by the
mutual arrangement of H-bonded molecules [9]. With decreasing density we observe again a more
pronounced structural order. In particular the first peak of gog(r), which corresponds to the
distance between the hydrogen in the H-bond and its acceptor oxygen, increases very rapidly and
the following minimum is lowered accordingly.
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Figure 14: Intermolecular pair distribution functions in low density water: (a) oxygen-hydrogen,
(b) hydrogen-hydrogen.

With neutron diffraction experiments on D,0, a weighted sum of the shown pair correlation
functions can be determined (assuming structural equivalence of H and D):

gi0t(r) = 0.092g00(r) + 0.422gox(r) + 0.4869m (). (9)

These sums are shown in Fig. 15 and compared with a neutron scattering result for amorphous
D;0 of Chowdhury et al. [21]. It turns out that the changes caused by the expansion of the water
are comparable to those observed in n-scattering experiments on undercooled water [20]: In those
regions, where gyo:(r) of the amorphous ice is lower than in the liquid (for example at about 3A4),
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stretching or cooling causes a decrease, in other regions an increase. On the whole, an approach to
the amorphous ice structure is occuring. The first two peaks even show an ’overshooting’, probably
due to a well-known defect of the ST2 model, which overemphasizes the water structure.
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Figure 15: Weighted sum of pair correlation functions from MD compared with neutron-scatterine
results of amorphous ice.

Following a proposition of Giguére [22], which had been taken up by Dore to interpret the n-
scattering results [20], a very simple and grafic explanation for the discussed changes can be given.
At higher densities and temperatures an appreciable amount of local arrangements occure, where
the hydroxyl group is pointing between the oxygens of two neighbouring water molecules as drawn
in Fig. 16 [22]. This transient arrangement, which may be called a bifurcated H-bond, can be
fitted in the overall tetrahedral network and corresponds to O-H distances of 2.3 rather than 1.85A4.
Accordingly, the increase of the first peak of gox(r) and the simultaneous depletion of the following
minimum indicates a strong reduction of bifurcated H-bonds and is in perfect agreement with our
previous observations like the disappearance of five-bonded water molecules (Fig. 8).

It has to be stressed that the term ’bifurcated H-bond' is used here in the above described
energetic or geometric sense. It seems that using a hydrogen-bond definition which incorporates
also the lifetime [14], such arrangements can no longer be addressed as bonds. Nevertheless, such
configurations, even though only transient, are characteristic for liquid water and its structural and
dynamical distinction from amorphous ice.

Figure 16: 'Bifurcated H-bond’ arrangement. According to Giguére [22].

7 Hydrogen-bonding and microdynamics

The dynamics of the water molecules in the expanded liquid also reveals a density dependence which
is completely diverse to what is expected from 'normal’ liquids. Usually, expansion increases the
molecular mobility, due to reduced steric hindrance. In contrast to this, in water a drastic reduction
of molecular mobility is observed, even at small density decreases (and at constant temperature).
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In ref. [12] we discussed the mean square displacements < Ar?(t) > and the corresponding self
diffusion coefficients D: A density decrease of 20 % (from 1.0 to 0.8g/cm?®) produces a reduction
of D by nearly a factor of 10! An analogueous behavior can be observed when considering the
reorientational motion of the molecules. Here we calculate the time correlation functions

Ti(t) =< Pycosb(t)) >,
where P; is the Legendre Polynomial of degree 1 and

cos 8(2) = 1;(0) - Ti(¢)

describes the rotation of a molecule fixed unit vectorT.;. The correlation time 77 is defined as

- fo " ue) d.

As an example, the density dependence of T;(t) and 7, of the intramolecular H-H-vector is shown

- Fig. 17a. For the integration to obtain T, Ty(t) is extrapolated to infinity by an exponential

function. The very rapid initial decay of Ti(t) is due to the well-known librational (hindered
rotational) motion of the water molecules. With decreasing density, the librational amplitude is
slightly diminished and the following exponential decay is slowed down considerably. Accordingly
the reorientation times 7, increase until a plateau is reached at about 0.8g/cm® (Fig. 17b).
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Figure 17: Density dependence of reorientational correlation functions and corresponding correla-
tion times.

A mechanism, which allows us to understand this loss of mobility, has been proposed by
Naberukhin [23] in correspondence with the structural considerations of Giguére [22], which we
“wcussed above. Accordingly, the mobility of the water molecules is strongly influenced by the
~yvesence of 'bifurcated H-bonds’. Structures which comprise many local arrangements of the kind
discussed in Fig. 16, reflect a facilitated switching from one 'regular’ H-bond arrangement to an-
other, across lowered energy barrieres. The structural changes observed in Figs. 8 and 14 reflect
the disappearance of such ’bifurcated H-bonds’ (defects of the tetra-functional bond network) and
explain the observed loss of mobility.

8 Conclusions

We have shown that the connectivity of the hydrogen-bond network can be described quite well
by random bond percolation on a lattice. It has also been shown that the structure of amorphous
ice can be represented by so called continuous random network models, developped for amor-
phous semiconductors [3,20,24]. A close inspection of the stretched liquid revealed however that
the deviations of the structure from the ’ideal’ tetra-functional network with four neighbors and
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four bonding-possibilities per molecule are very important for the properties of water. The ideal
tetrahedral network structure is attained only at the mechanical stability limit, which thus can be
identified with a new kind of order transition (with the quantities shown in Figs. 8 and 13b as
order parameter).

In retrospect, the high mobility of the water molecules seems to be in contradiction to the results
of the percolation study, that at any instance a spanning network of strong H-bonds (7;; < —18
kJ/mole) is present. In view of the fact that this interaction energy is large compared to the
thermal energy kT, one should expect water to be gel-like, at least highly viscous. In fact this can
be obsérved in the simulation at low densities.

Therefore, the deviations from a perfect tetrahedral network are of decisive importance for
the molecular dynamics. Random network models which focus on distorted tetrahedral local order
without considering explicitely arrangements of five nearest neighbors habe to be re-examined under
this point of view.

There are experimental observations, which perfectly support our findings regarding low density
water: the hydrophobic hydration effect. It is well-known that inert solutes produce increase
structural order and decreased mobility in its hydration shell [19,25]. This can easily be understocegy
by realizing that the main effect of the inert solute is to lower locally the density of water and
to prevent the ’straddling’ tetrahedral arrangement (see [19]) of the water molecules in the first
hydration shell from being disturbed by the approach of 'fifth neighbors’.
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