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. STRUCTURE OF STABLE AND METASTABLE WATER. ANALYSIS OF VORONOI
POLYHEDRA OF MOLECULAR DYNAMICS MODELS

A. Geiger {Gaiger)> N. N. Medvedev, UDC 532.74
and Yu. I. Naberukhin

A study has been made of various properties of Voronoi polyhedra and simplified
Voronoi polyhedra (in which the indirect neighbors are excluded) for molecular-
dynamic models of normal and "stretched'" water. It has been shown that when the
density is reduced from 1.0 to 0.8 g/cm?, the hydrogen bond network of the water
becomes more nearly tetrahedral. When the density is further reduced, the net-
work begins to break down, and large cavities appear. Whatever the density, the
structure of the water is not like the structure of an ideal, random, tetrahedral
network: the angles between the bonds in the network deviate considerably from

tetrahedral.

INTRODUCTION

In many studies, particularly during the last few years, rather reliable support has
been found for the view that a single, random network of hydrogen bonds is an adequate model
of the structure of water [1-4). Of course, such a network can be specifically realized
only in a computer experiment. However, analysis of the properties of these networks has

~encountered a problem: in the modern versions of the molecular dynamics methed or the Monte
Carlo method, in application to water, there is no natural definition of a hydrogen bond.
All that is assigned in these methods is the potential of complete interaction of water
molecules, and the definition of a hydrogen bond must be added as a supplement. Therefore,
different versions of the water network are obtained today by various investigators, depend-
ing on the definition of the hydrogen bond that they are using.

In the present work, we will use the Voronoi polyhedra method in an analysis of the
structure of water. The properties of a Voronoi polyhedron of a given molecule are deter-
mined exclusively by the location of the nearest neighbors, without any need to know which
of them are connected by hydrogen bonds. Herein lies the advantage of the method: it does
not require construction of a network of hydrogen bonds in explicit form. However, it does
have its own problems, which have prevented any application of the method to studies of the
structure of water. (In [5], only the volumes of the Voronoi polyhedra were calculated,
without any analysis of their geometric property; in [6, 7], they were not used in studying
pure water, but rather in problems of hydration in aqueous solutions.) Voronoi poly-
hedra have been used extensively only in the analysis of close packing of spheri-
cal particles [8-12], beginning with the pioneering work of Bernal [13]. For loose systems,
a class that includes water, Voronoi polyhedra are obtained in very complex form, since
they are determined by the positions of not only the nearest neighbors but also compara-
tively distant molecules. Naturally, this is an obstacle to structural analysis. Such
a situation is also illustrated by the data of the present work. However, we will show
here that these difficulties can be overcome and that complete, unambiguous information
on the structure of water can be obtained if we use, along with the conventional Voronoi
polyhedra, simplified Voronoi polyhedra that we had introduced previously [14].

VORONOI POLYHEDRA

The Voronoi polyhedron (VP) of a given atom (or, more precisely, of the center of an
atom) in a system of other atoms is defined as that region of space in which all points
are closer to the given atom than to any of the other atoms in this system. Such a region
is a convex polyhedron. Figure la is a two-dimensional illustration of a Voronoi polyhedron.
the selected center O is connected by line segments to all other centers of the system.
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Fig. 1. a) Construction of Voronoi pélyhedron for
center 0. Points marked as x denote the middles of
segments connecting center O to other centers of the
system. b) Simplified Voronoi polyhedron for center
0 corresponding to Voronoi polyhedron in Fig. la.
The face from the indirect neighbor A has been elim-
inated from this simplified polyhedron.

Through the center of each segment we pass a perpendicular line (or a plane in the three-
dimensional case) that divides the space into two regions. All of the points of that region
in which the center 0 is located lie closer to O than to the center located at the other

end of the segment. The intersection of such half-spaces gives a region in which all points
are closer to the given center O than to any other point.

Of course, not all centers of the system participate in forming faces of the Voronoi
polyhedron. The more distant points are cut off by their nearer neighbors. For example,
center D does not create a face of the polyhedron for center O, since the plane passing
through the middle of the segment OD is "cut off" by planes passing through the centers
of segments OB and OC. Thus, construction of the Voronoi polyhedron defines a certain number
of “nearest' neighbors that give the faces of the VP, These points are called geometric
neighbors of the particular center of the system.

Further, among the geometric neighbors we can perceive direct and indirect neighbors*
(14, 15]. Thus, in Fig. la, center A is a geometric neighbor, but it is distinguished by
the fact that the center of the segment OA lies outside the Voronoi polyhedron, whereas
for the other neighbors, the centers lie on the faces. Such a situation occurs for the
relatively distant geometric neighbors. The corresponding faces usually prove to be small,
and hence they are called "nonbasic" = or "indirect" in the terminology of [15]. From this
definition it is easy to see that the neighbor A is nonbasic if it is cut off by a plane
passing through another geometric neighbor (for example, B) parallel to the corresponding
face of the Voronoi polyhedron; in this case, the angle between segments OB and BA is obviously
greater than 90° (Fig. 1b). Whence it follows, by the way, that in ideal tetrahedral net-
works, second neighbors with respect to bonds cannot be direct geometric neighbors (there

the angle OBA = 109.5°).

In unordered systems, there is an enormous diversity of types of Voronoi polyhedra.
Hence it is natural to desire to simplify the VP in some manner — tosingle out their primary
properties after discarding the secondary properties. To this end, simplified Voronoi poly-
hedra (SVP) were proposed in [14]; these were obtained from the conventional VP after dis-
carding the indirect neighbors. Thus, in constructing The SVP for the center O, we must
ignore the neighbor A. The SVP obtained in this manner is shown in Fig. 1b.

MODELS

As models of water we have used computer models constructed by the molecular dynamics
method with periodic boundary conditions for 216 molecules interacting with ST2 potential
at a constant temperature of 273 K and densities that decrease from p = 1.0 to 0.7 g/cm3.

*These are the terms used in [15]; in the present article, the corresponding Russian terms
can be translated literally as "basic" and "nonbasic" - Translator.
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Fig. 3. Voronoi polyhedron for structure of diamond (a), typical Voronoi
polyhedron (n = 23) for Polk model (b), and simplified Voronoi polyhedron
(n = 7) corresponding to Polk model (c).

These models describe "stretched" metastable water along with "normal" water. The details
of the procedures used in obtaining these models are given in [3]. Also reported in [3]
were studies of various properties of the models, mainly by distribution function methods
without the use of Voronoi polyhedra.

For comparison with the models of water, we will analyze a special model of a random
tetrahedral network — the Polk model. This model was constructed mechanically [16] from
randomly oriented units with tetrahedrally directed bonds in such a manner as to minimize
the differences in bond lengths and the deviations from tetrahedral angles between the bonds.
Then the Polk model was relaxed by minimizing the elastic energy of the network [17]. As a
result, this random network deviates very little from ideal tetrahedral coordination: the
standard deviation of the bond lengths is about 17, angles 7%. Thus, the relaxed Polk
model can be considered as the model of an ideal random tetrahedral network. The coordin-
ates of the nodes of this model (consisting of 519 atoms) were very kindly furnished to
us by Prof. P. Steinhardt, to whom we express our sincere appreciation. In the present
article, we have used for analysis 377 central nodes of the model in order to avoid the
influence of the boundary of the model on the VP characteristics.

DISCUSSION OF RESULTS

The probabilities of appearance of a given number of faces for the VP or SVP of water
with densities from 1.0 to 0.7 g/cm®, along with the corresponding distribution for the
Polk model, are shown in Fig. 2. 1In the Polk model we observe a large shift of the histo-
grams when the VP is simplified, indicating a large number of indirect geometric neighbors
that lead to a large number of faces for the VP, Elimination of these neighbors result in
a substantial simplification of the polyhedron. The distribution becomes narrower, and the
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Fig. 4. Mean number of faces <n> on Voronoi
polyhedra (upper curve) and simplified Voronoi
polyhedra (lower curve) for water molecules,
as a function of density (T = 273 K). The
data plotted as squares correspond to a tem-
perature of 224 K. The dashed curves show the
values of <n> for the Polk model: 19.36 for
the VP and 7.05 for the SVP.

most often encountered number of faces in the polyhedron is reduced from 20 to 7. The changes
are so great that the two distributions do not overlap at all.

The source of such great changes is undoubtedly the well-defined tetrahedral directions
of the bonds in the Polk model. In fact, in the ideal tetrahedral network of diamond, the
Voronoi polyhedron is a hexadecahedron consisting of the fundamental tetrahedron (formed
by the four nearest neighbors) with vertices cut off by the faces of a rhombododecahedron
formed by 12 second neighbors (Fig. 3a). Here, the second neighbors are indirect geometric
neighbors, and they give 12 comparatively small faces. Simplification of the VP in the
jdeal crystal of diamond would give as the SVP a regular tetrahedron. In a real crystal,
however (I-structure of the crystal), this will be, of course, a more complex figure. A
typical VP for the Polk model is shown in Fig. 3b. We see that here also there are four
large faces corresponding to the first neighbors; they are speckled with a large number
of small faces due to secondary neighbors and also neighbors that are more distant along
the bonds. The simplified polyhedron (Fig. 3c) eliminates most of the small faces and re-
stores the faces from the first neighbors, but not completely: certain vertices remain
cut off by faces from more distant neighbors that have proved to be direct geometric neigh-

bors.

An analogous picture should be observed for other networks with a predominantly tetra-
hedral direction of the bonds. For close packing of spherically symmetrical atoms (simple
liquids), the situation is different. There, the participation of the indirect neighbors
in constructing the VP is due mainly to thermal chaos, and the change in distribution when
the transition is made from the VP to the SVP is less significant [14, 18). For example,
while the mean number of faces in the polyhedron <n> for water networks is greater than
16 for the VP and less than 10 for the SVP (Fig. 4), we find that in the case of simple
liquids <n> is 14 for the VP and 12 for the SVP [18].

Thus, the distributions of the number of faces in Voronoi polyhedra for the models of
water indicate the presence of a rather well defined tetrahedral order. It is interesting
that when the density is reduced from 1.0 to 0.8 g/em®, the distributions for the VP and SVP
approach the distributions for the Polk model. With water densities below 0.8 g/cm?®, this
approach ends, so that the structure of water never becomes similar to this model. As shown
in a previous study [3] and as can be seen from our subsequent discussion, breakdown of
the system begins at 0.8 g/cm®, as manifested in the formation of large cavities., It was
also noted in [3], on the basis of an investigation of various distribution functions, that
before the water system begins to break down as the density is reduced, its network becomes
more nearly tetrahedral. This is entirely consistent with the data presented in Figs. 2
and 4. One might think that the difference of the water structure from that of the Polk
model is due to thermal excitations (the Polk model corresponds to a temperature of 0 K,
the models of water to 273 K). However, it is fully evident that even after removing thermal
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Fig. 5. Distribution of number of edges on
faces of Voronoi polyhedra (on the right) and
simplified Voronoi polyhedra (on the left)
form models of water with densities p = 1.0
and 0.8 g/cm®, and Polk model.

excitatien (upon transition from the I-structure of water to its intrinsic structures F
or V [19, 20]), the structure of water will still differ from the structure of the Polk
network, which is too nearly tetrahedral.

We have followed the influence of temperature on the' structure of water by calculat-
ing the same distributions as in Fig. 2 with a density of 1.0 g/em® and T = 224 K. The
data points plotted as squares in Fig. 4 show the mean number of faces in the VP and SVP
for this state. As can be seen, the lowering of temperature with a constant density leads
to an increase in the degree of "tetrahedricity" of the water network; the effect from lower-
ing the temperature by some 50 K corresponds to a lovering of density by only 5Z.

The observed dependence of the degree of ordering of the water structure on the density
is exactly opposite to that for simple liquids, where an increase of density leads to a
more highly ordered structure. The explanation for this opposite behavior is simple. 1In
"ordinary" liquids, the structure is determined mainly by packing effects, whereas in water
the structure is determined mainly by hydrogen bonds, with their very marked tendency toward
local tetrahedral order. With large cavities corresponding to normal conditions, the water
network is distorted under the influence of internal pressure. When this pressure is reduced,
i.e., when the change is made to a lower density, we permit the water network to manifest
its tetrahedral nature to a greater degree.

Figure 5 shows the distribution of the number of edges on the faces of the VP and SVP.
We see that on the VP, some faces with 14 sides are encountered, but the faces are most
often quadrilaterals. In simple liquids, these distributions were found to be somewhat
narrower, with a maximum at m = 5 (11, 18]. The most interesting is the bimodal form of
a distribution for the VP in the Polk model. The right-hand and lower part of this bimodal
distribution pertains to residues of faces of the fundamental tetrahedron cut off by numerous
faces from the second and third (etc.) neighbors through the network, which correspond to the
left-hand part of the distribution.' In the VP of diamond, the number of the latter relates
to the number of the former as 12 to 4, which corresponds to a ratio of peak areas in the
Polk model of approximately 3. When the tetrahedra are simplified, most of the small faces
from the distant neighbors disappear, and certain faces of the fundamental tetrahedron recover
their original triangular form; this explains the large maximum on the distribution for
the SVP at m = 3. All of this is possible only as a consequence of small deviations from
the tetrahedral configuration of the network in the Polk model. In the models of water,
all of the distributions are more spread out; and upon simplification, the ideal tetrahedra
are restored to a smaller degree (there is no maximum at m = 3).
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Fig. 6. Radial distributions of geometric neighbors for Voronci poly-
hedra (a) and simplified Voronoi polyhedra (b) for models of water
with density p = 1.0, 0.9, 0.8, and 0.7 g/cm® and Polk model.

The role of the indirect neighbors in the structure of water can be followed well in
the radial distributions of the geometric neighbors, i.e., the distributions of distances
from the central atom to its geometric neighbors. In Fig. 6a these distributions are shown
for the VP. The first peak on the distribution corresponds to the nearest neighbors. For
the Polk model, there are exactly four nearest neighbors, and they are positioned at essen-
tially identical distances (the first peak is isolated and narrow). For the models of water,
the first peak is spread out, but the minimum that separates this peak from the distributions
for the more distant neighbors becomes deeper as the density is reduced from 1.0 to 0.8
g/cn®. Here the coordination number (area under the first peak before the minimum) changes
from 4.5 to 4.0. This part of the radial distributions of geometric neighbors coincides
with the complete radial distribution for all molecules of water [3]; and just the noted
facts, the same as there, must be interpreted as a consequence of an improvement of tetrahed-
ral coordination of neighboring particles when the density is reduced.

The second, broad peak on the distributions corresponds to the next neighbors along
the bonds. For the Polk model, its maximum is located between R/R;, = 1.6 and 1.7; i.e.,
it corresponds to a distance to the second neighbors along the bonds in an ideal tetrahedral
network, where R/R; = (8/3)*/% = 1.633. In water, this peak is shifted from R/R, = 1.52
for dense water to R/R, = 1.6 for loose water; and this also demonstrates the rather high
degree of tetrahedricity of the water networks.

The composition of the broad peak is disclosed in detail by analysis of the direct geo-
metric neighbors as determined on the basis of the simplified Voronoci polyhedra (Fig. 6b).
As we had mentioned, the second neighbors along the bonds cannot be direct neighbors in an
ideal tetrahedral network. Therefore, the procedure of simplifying the VP effectively ex-
cludes the majority of the second neighbers in the distributions in Fig. 6b. In fact, we
have essentially no neighbors at R/R; = 1.6 for the Polk network; and for the water models,
a minimum is observed at this distance. Thus, the radial distributions for the simplified
Voronoi polyhedra demonstrate the contributions of distant neighbors: third, fourth, and

S0 on.

The distinctive feature of water that is disclosed by Fig. 6b is the behavior of the
maximum on the distribution of distant neighbors at a distance R/R; = 1.35, which is less
than the value for the second neighbors. In the model of Samoilov [21], this peak was as-
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Fig. 7. Distribution of volumes of Voronoi
polyhedra for medels of water with density
p=1.0, 0.9, 0.8, and 0.7 g/cm®., For the
densities 0.8 and 0.7, 0.5% and 10.3% (re-
spectively) of the area under the curves is
beyond the limits of the plots shown here.
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Fig. 8. Reciprocal of most probable volume

of Voronoi polyhedron (position of maxima

of distributions in Fig. 7) for models of
water, as a function of density (data points).
The straight line shows the reciprocal of the
mean volume per molecule as a function of
density. The arrow indicates the mean inverse
volume of the Voronoi polyhedron for the Polk
model. In calculating the volume, the unit

of length was taken as the position of the
first maximum on the radial distribution func-
tion R,.

cribed to molecules that do not enter into hydrogen bonds, molecules that are located in
icelike cavities of the water structure. In computer models of water, however, we do not
detect any such molecules or any such cavities [4]. Hence the peak under discussion must

be assigned to distant neighbors (third and fourth) in the network of hydrogen bonds. Such
distant neighbors may approach closer to the central molecule than the second neighbors

if the network deviates sufficiently from tetrahedral. The possibility of realizing such

a situation in networks of water hydrogen bonds is demonstrated by the structures of certain
higher modifications of ice. Thus, in ice III, in which the angles between the hydrogen
bonds differ appreciably from tetrahedral, certain third and fourth neighbors along the

bonds are located closer than the second neighbors. In liquid water, apparently, an analogous
situation exists. Therefore, the peak of the indirect neighbors as R/R; = 1.35 indicates
strong deformation of the hydrogen bond network of liquid water, as well as substantial
deviations of the bond angles from tetrahedral. The decrease of the area under this peak
when the density is reduced to 0.8 g/cm® (see Fig. 6b) indicates an increase in tetrahedricity
of the hydrogen bond network.

What is changed in the structure of water upon transition through the density 0.8 g/cm3?
An examination of the VP volume distributions will help to answer this question. From Fig.
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7 we see that when the density is reduced from 1.0 to 0.8 g/cm®, the distribution is shifted
toward larger volumes; i.e., on the average, the molecules acquire greater volumes of the
surrounding space. This relationship is a trivial consequence of the inverse proportionality
of the system density p to the mean volume per molecule (Fig. 8, straight line). A nontrivial
result that we can see in Figs. 7 and 8 is that the maximum in the volume distribution remains
in place as the density is reduced below 0.8 g/cm®, and the increase in mean volume of the

VP with decreasing density in this case is a consequence of growth of the right-hand shoulder
of the distribution — i.e., VP with anomalously large volumes appear. This fact indicates
that, under these conditions, the sample contains cracks or pores that separate the molecules
to great distances, whereas in the remaining volume, "normal" intermolecular distances are
preserved. In other words, theunified network of hydrogen bonds in water begins to break

up at densities below 0.8 g/em3.

As we had mentioned previously, the Polk model can be considered as an ideal model of
a random tetrahedral network in the sense that the maximum possible tetrahedral coordination
in random networks is apparently realized in this model. Clearly, such a network has the
minimum possible density and is the most open; any deformation of the ideal network (while
its integrity is preserved) must lead to a decrease in the volume per particle. The recipro-
cal of the mean volume of one molecule (<V>~!) in the Polk network is 0.638 if we take R,
as the unit of length. The value <V>"! = 0.639 in these units corresponds to a water density
of 0.8 g/cm®. The closeness of these two values explains why the density of 0.8 g/cm® is
the limit of stability of the water network. At lower densities, the unified random tetra-
hedral network cannot be realized; and an increase of volumes can take place only through
the formation of large pores in the network.

CONCLUSIONS

The basic results that we have obtained in regard to the structure of water, by an analysis
of Voronoi polyhedra and simplified Voronoi polyhedra, are as follows: the network of hydro-
gen bonds in water is not similar to an ideal random tetrahedral network under any conditions;
in the actual network, there are major deviations from the tetrahedral directions of the
bonds, such that molecules that are distant with respect to the bonds may be located closer
than the first molecules. When the density is reduced from 1.0 to 0.8 g/cm®, the tetrahedral
coordination of the hydrogen bond network is improved: the angles between bonds approach
tetrahedral. This can be interpreted as a consequence of a decrease in the internal pres-
sure that had forced the network to be deformed under normal conditions. However, the cap-
ability for rectifying the random quasitetrahedral network by removing the pressure has
a limit corresponding to a density of 0.8 g/cm®. When the density is further reduced, the
network becomes unstable, forming discontinuities and cavities that are large on a molecular

scale.

The results that we have set forth in this article give a rather clear demonstration
of the possibilities of the Voronoi polyhedra method in analyzing the construction of the
hydrogen bond networks that are the basis of water structure. An important feature of the
method is that it does not depend on an exact definition of the hydrogen bond. This makes
it possible to examine the properties of the network critically in terms of greater or lesser
tetrahedricity without constructing the network itself. More detailed information, more
convenient for interpretation, is obtained when the change is made from conventional to
simplified Voronoi polyhedra in which no account is taken of most of the neighbors that

are second along the bonds.*

LITERATURE CITED

1. M. G. Skits and S. A. Rais, Water and Aqueous Solutions at Temperatures below 0°C [in
Russian], Naukova Dumka, Kiev (1985), pp. 76-175.

2. R. L. Blumberg, H. E. Stanley, A. Geiger, and P. Mausbach, J. Chem. Phys., 80, 5230-
5241 (1984).

3. A. Geiger, P. Mausbach, and J. Schnitker, in: Water and Aqueous Solutions, by G. W.
Neilson and J. E. Enderby (eds.), A. Hilger, Bristol (1986), pp. 15-30.

4. G. G. Malenkov, "Structure of aqueous systems: Models and numerical experiment,"
Author's Abstract of Doctoral Dissertation, Moscow (1990).

*This work was performed with the support of the Humboldt Fund (Federated Republic of
Germany) .



~i h L

= O D 00

b

12,
13;
14.
15.
~16.
17
18.

19.
20.

2%

234

Rapaport, Mol. Phys., 48, 23-24 (1983).
David and C. W. David, J. Chem. Phys., 78, 1459-1464 (1982).

David, Comput. Math. Appl., B, 12, 763-766 (1986).
Hsu and A. Rahman, J. Chem. Phys » 70, 5234-5240 (1979); 71, 4974-4986 (1979).

; Tanaka, J. Phys. Soc. Jpn., 55, 3108- 3116, 3428-3436 (1986)
. Nose and F. Yonezaea, J. Chem. Phys., 84, 1803-1814 (1986).
. N. Medvedev, V. P. Voloshin, and Yu. Naberukhin, Mater. Chem. Phys., 14, 533-548

D
E

c

c

M

S

N
(1986).
N

J

N

W

D

P

v

ml:l‘l'lﬂ

. N. Medvedev and Yu. I. Naberukhin, Zh. Strukt. Khim., 28, No. 3, 117-132 (1987).

. D. Bernal, Proc. R. Soc. London, Ser. A, 280, 299-322 (1964).

. N. Medvedev and Yu. I. Naberukhin, Zh. Strukt. Khim., 26, No. 3, 59-67 (1985).

. Brostow, J.-P. Dussault, and B. L. Fox, J. Comput. Phys., 29, 81-86 (1978).

. E. Polk, J. Non-Cryst. Solids, 5, 365-376 (1971).

. Steinhardt, R. Alben, and D. J. Weaire, J. Non-Cryst. Solids, 15, 199-214 (1974).

- P. Voloshin, N. N. Medvedev, and Yu. I. Naberukhin, Zh. Strukt. Khim., 26, No. 3,
68-76 (1985).
Yu. I. Naberukhin, V. P. Voloshin, and N. N. Medvedev, Rasplavy, 1, No. 2, 71-77 (1987).
G. G. Malenkov, A. V. Teplukhin, and V. I. Poltev, Zh. Strukt. Khim., 30, No. 4, 89-97
(1989).
0. Ya. Samoilov, Structure of Aqueous Solutions of Electrolytes and the Hydration of
Ions [in Russian], Izd. Akad. Nauk SSSR, Moscow (1957).




