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Formulae for a SO(3)-invariant expansion of the pair-molecular interaction-energy are 
derived. Two different cases, of exponential potential and of inverse-power potential, are 
considered for molecules of arbitrary shape. Methods for the determination of the generalized 
multipole components for molecules are developed on the base of transformation formulae 
for rotation and translation of a coordinate system. The importance of accounting the 
difference between the general expansion and that of a conventional multipole type is 
illustrated on the base of simulation data for mesogen substance PCH-5. 

1. Introduction 

Structure and physical properties of molecular systems are determined by 
molecular interactions (MI). In general, these interactions are non-central, i.e. 
are dependent on the relative orientation of molecules. It is usual for different 
computational schemes to account for this effect by expanding the pair- 
potential into a set of rotational invariants [1]: 

E(1, 2)---- E(R12 0 ,02)  = E U `d2t3 (R ~ ~111213 [(~ n:n,~) 
mlm2\ 121 ~ m l m 2 \ ' ~ l  (1.1) 

where R12 is the vector connecting the origins of the molecule-fixed coordinate 
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systems; g2x (2) is the set of Euler angles, which determines the orientation of 
the 1 (2) molecule in the laboratory reference coordinate system; 

m,mz,~.l..Z.W,2,, = Onlml (a l )  Dnzmz(a2) O~30(a12 ) • (1.2) In~l~tl \ nlnzn3 ] 

(q g2 t~ ] stands for a Wigner 3j-symbol; Dt,,n(O) is a Wigner D-function. 
nln2~31 

The properties of rotational invariants (1.2) are well known while com- 
l rr l l1213 I r J  x t. prehensive calculation of the Umlm2~XlE)-Iunctlons, taking into account all 

interactions between the particles constituting the molecules, are connected 
with substantial computational difficulties, even for the most simple molecules. 

Almost all existing methods for the MI calculations, both quantum 
mechanical and semi-empirical, are based on the representation of the energy 
of the system as a sum of effective pair potentials which, in general, are not 
similar to the interaction potentials of pairs of isolated particles. In such cases 
some model of the molecular structure is used, depending on the computation- 
al methods and on the available experimental methods for determination of the 
MI parameters [2-9]. For example, the atom-atom potential method [3] 
corresponds to the representation of the molecule as the arrangement of sites 
(atoms). As a generalization of this method to the case of a continuous 
distribution of interacting sites, there exists the method of effective pair 
interactions (EPI) [9-14]. In the EPI method the MI energy is written as 

E(1, 2) = f dr I f dr 2 pl(rl) pz(r2) U(rl2) ; (1.3) 

here r 1 (2) is the radius-vector of the interacting site in the molecule 1 (2), 
r12 = r E - r  1 + R12 is the distance between the interacting sites, R12 connects 
molecular reference systems, pi(ri) is the spatial distribution function of the 
interacting sites in the molecule i and U(rl2 ) stands for the EPI of sites in 
molecules 1 and 2. 

The representation of the energy in the system by formula (1.3) gives a 
possibility to obtain an analytical expression for rTq~2t~ t~, ~ in (1.1). For ~ m l m 2 \ ~ 1 2 1  

discrete models these functions have been evaluated in [9-11,15]; for a 
continuous distribution of the interacting sites in the ellipsoidal molecule, such 
formulae have been obtained in [13] in the multipole approximation for EPI 
(see also [14, refs.]). But in order to use the results of these papers, while 
treating microscopic models of molecular liquids and liquid crystals, one has to 
solve several problems. 

In the second part of this work we derive asymptotical sets for the EPI 
potential, both of exponential and of inverse power type, generalizing the 
results of [10,11,15] to the case of arbitrary distribution pi(ri). It should be 
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realized that for the description of the interaction between extended bodies the 
multipole expansion in general is not applicable, except for the case of a 
Coulomb potential. Formally, it is due to the incompleteness of the set of 
multipole moments; a well-known fact in the theory of scattering [16]. 

Here we derive the expansion into the set of generalized moments R~2'm, 
defined also in [17,18], giving a complete parameterization for the MI calcu- 
lation. 

In the third part, the transformation formulae for rotation and translation of 
generalized multipole moments are derived. These enable one to build up 
molecular tensors from atomic or fragment ones and in this way to take into 
consideration molecular configuration in MI calculations. This possibility is also 
interesting from the point of view of simplicity to treat the effect of substitution 
on different mesomorphic properties. On the other hand, by neglecting 
transformational properties of molecular tensors and MI asymptotics one can 
come (as in [19]) to false conclusions about the connection between the 
molecular structure and macroscopic properties. 

In the fourth part, our algorithm for the MI computation in the case of a 
discrete-interacting-centers distribution is described and some results based on 
molecular dynamics simulation data for mesogenic PCH-5 are presented. 

2. Asymptoticai behavior of SO(3)-invariant expansions for molecular 
interactions 

Following [11,13,15] we write down the energy (1.2) as a function of the 
Fourier transform of the EPI potential U(r12): 

E(1, 2)--fdrl  Pl(rl)fUr 2 P2(r2)f dk exp[ik. ( rz - r  1 -~-el2)] U ( k ) ,  

(2.1) 

where U(k) = (2"rr) -3 ~ dr  e x p ( - i k ,  r) U(r). 
Expanding the exponent in (2.1) into a set in spherical functions [20], after 

integrating in k-space and some transformations, we obtain an expansion 
similar to (1.1) in which fTlll213 (l~ ~ functions are defined as Vmlm2\~12/ 

U'l'213¢R ~= ~r3(-1)qit3(21l + l)(212 + l)(213 + l) [ l l l z~)  
mlm2*,''127 2q+t2-6F(11 + 3) F(12 + ~) \00  

x f dk kq+t2+2U(k) Q,~m,(k 2) Q,:m:(k 2) j,3(kR,2). (2.2) 
0 
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Here  ]l(Z) is a spherical Bessel function, F(z) is the Euler function and 

QLM(kz) = ,rr3/z(_2)LF(L + 3) 
kI~x/2"-E + 1 PLM(k) ' 

PLM(k) -- (--i)L f dr  r~L(kr ) pLM(r) (2.3) 
2,rr2 

0 

pLM(r) = f dP p(r) YLM(P), 

where P shows the orientation of vector r and YLM(P) are spherical harmonics. 
For further calculations let us outline the properties of p(r). Because of the 

fact that molecules have definite shape and dimensions, pi(ri) can be consid- 
ered as generalized functions with compact cores [21]. Therefore,  their Fourier 
transforms are decreasing functions with k ~ oo and in the upper semi-plane of 
complex k they decrease exponentially. 

We shall consider, at first, the inverse power potentials of EPI: 

C 2 n ( - 1 )  n-1 
U(r12 ) = C2,r -2" , U ( k ) -  4 - ~ - ~ v  " k 2"-3 • (2.4) 

Because of the aforementioned asymptotical properties of pi(k), integrals in 
(2.1) and (2.2) are convergent if there is no interacting sites overlap, i.e. if 
r12 = r 2 - r  1 + R12 # 0 .  Taking into account asymptotical properties of the 
integral in (2.2) (see appendix A) we have, after performing all transforma- 
tions, 

e¢ Al11213 C2 n 
I[111213 (1.~ ~ ~ z lp(n) ~.~ i17~ 0 1112 2s I 2s 2 

= ~ e l lml  (1)  n12m2(2) Vmlm2(n)\ ' '12] ~.d 0 l~2n+ll+12+2P ~ 0  $152 
= ' ' 1 2  Sl+S2 

(2.5) 

Here  

Al11213 p(~) 
2 2 " - z  ( 1 1 + 1 2 1 3 - 1  ) 

= (-1)/3x/--~ (2n---2)! (213 + 1)F ; + n + p 

×F(11+12+13  )(111213) 
2 + n + p  k 0 0 0  ' 

BOtd z = (-1)q' tr(2ll  + 1)(2l 2 + 1) 
os:2 2sl!sflr(Sl + li + 3) r(s2 + lz + 3) ' 

and generalized moments (so-called 2s-power radii [17]) are defined by the 
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following expression: 

2s • J l + 2 s ~ T *  / ^ x  R,, . ( t )  = o r r  rl,,,tr) Pi(r) (2.6) 

and give complete parameterization for pi(ri). 
If in (2.5) s I = s 2 = p  = 0, this expansion reduces to a multipole one (cf. 

[13]). The discrepancy between the multipole expansion and total dispersion 
interaction energy for the case of dumbbell molecules has been visualized in 
[11,14]. It is shown there that these deviations are increasing with decreasing 
intermolecular distance. One can suppose, based on these estimates, that for 
liquid crystals those terms in (2.5) that are neglected in multipole expansion, 
can be two orders of magnitude larger than those which are taken into account. 
It should be noted that influence of dispersion interactions on thermodynamic 
potentials and other parameters of orientationally ordered systems can also be 
underestimated on the base of multipole expansion [19]. In a general case one 
should either make the summation of the whole infinite set (2.5), or evaluate 
the integral over k in (2.2) for the given molecular parameters. But if it is 
possible to neglect the terms of order higher than I then the summation in (2.5) 
should be done not only for l 1 + l 2 ~< l, but also for 2p = l - l I - I 2.  

Now we shall proceed with the determination of the so-called radial factor 
ul11213 [ l~ "~ mamz~..12 ~ in expansion (1.1) for the EPI potentials of exponential (repulsive) 
type: 

U(r12 ) = A exp(-ar12) , 
A 1 

U ( k ) -  7r2 (k 2 + a2,2.) (2.7) 

The radial factor, corresponding to it, can be written as 

ul11213 i'l~ 
mlm2(zo)  \ a  ~" 12 ] 

= 4A(2,tr)4(-1)t2it3[(211 + 1)(2l 2 + 1)(213 + 1 ) ]  1 ' 2  {111213~ 
\ 0 0 0 /  

× dk (k 2 + a2)2 j,3(kR12) Ptaml(k; 1) Pt2m2(k; 2) ,  (2.8) 
0 

w h e r e  Ptimi(k; i) are defined by (2.3). 
First of all it should be noted that l 1 + l 2 + l (mod 2 ) =  0, because in the 

other cases the 3j-symbols are vanishing. Thus, integration in (2.8) can be 
extended over the whole real axis. Accounting the known property of Bessel 
functions [22] 

j t (z  ) = (_ l ) t j t (_z )  , (1) = ~[h, (z) + ( -1 ) '+ lh} l ) ( - z ) ] ,  (2.9) 
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(2.8) can be transformed to 

uldd3 ¢0 ~ = 2A(E~r)4(-1)'2i13[(211 + 1)(2/2 + 1)(213 + 1)] 1/2 (lll2la~ 
mlm2(~) \''12)' 0 0 0 / 

o o  

f h~13)(kR12) p,~m~(k; 1) P,2m2(k; 2) .  
k 2 

× dk (k 2 + a2)2 

-® (2.10) 

Reminding the aforementioned properties of pi(k), the integral in (2.10) can be 
easily evaluated in the complex plane. Finally, after all transformations, we 
have 

uIll213 (l~ "~ 
mlm2(o~)\*'121 

/ l ,  1213~ 
= -A,rr3ill-h[(2ll + 1)(212 + 1)(213 + 1)]1/2 ~0-0,0 ] 

, (kt3(aR12) da~'(a) --Ta-a + [(13 + 1)kt3(aR12 ) -aR12k,3 + 1(aR12)] - - ~ ) .  x 

(2.11) 

Here  

~(a) r.,1+/2 - -  = l 1 Dllmltl~'~ 1) Pt2m2(k; 2)]k=i~ , 

( z + z t ,  e Z k,(z)  = ( -  z)' 
Z 

For discrete molecular models, corresponding to the method of a tom-a tom 
potential, 

~(a) = ill(ar~l ) i l2(arn2) , 

where it(z ) are modified spherical Bessel functions. Using the identity relation 
(d /dz)  it(z ) = ( l / z )  it(z ) + il+l(Z ) for this case, we obtain 

ulll213 ( 
rntm2(~)~, ~, 17, R12) 

= -A~raih-h[(2ll + 1)(212 + 1)(213+1)] 1/2 (111213~ 
\ 0 0 0 /  

x [ kt3(aR12) ( 11-12+13+1 a ill(are1) il2(ar'2) ÷ r¢lilx+l(ar~l) il2(ar'2) 

+ r,TEit1(ar~l)it2+l(ar,72) ) - R12ill(ar~l)il3+l(aR12)]. (2.12) 
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Formula (2.12) is the particular case of (2.11) for the interaction of atom ~ in 
the molecular 1 with atom 77 in the molecule 2, and it coincides with the similar 
one obtained in [15]. Asymptotic properties of (2.11) and (2.12) with n12 
variation follow in a trivial way from the asymptotic properties of Bessel 
functions. 

Functions 1T111213 ( R  "~ obtained here, possess several obvious symmetry v m l m 2 \ * *  12)', 
properties, as it is clear from their definition. First of all, MI energy is scalar 
and that is why there are constraints on the variation of indices: l i <~ lj + I k 

(i, j, k} = 1, 2, 3. Secondly, this energy is invariant during the inversion of 
space-coordinates and this fact is provided by the vanishing of 3j-symbols if 
l 1 + 12 + l 3 ( m o d 2 ) ~ 0 .  And thirdly, the MI Hamiltonian is a hermitian 
operator. This fact can be directly checked with the help of (2.5) and (2.11) 
and corresponds to the following relation: 

[ I [  111213 ( R  ] ]*  = ( - - l ~ m l + m 2 l [  111213 ( R  "1 
Vrn lm2\a .12]J  \ ~.1 ~ -ml - rn2 \L .12  ] • 

And besides of this, for identical molecules the following relation is valid: 
Umlm2(R12)lll213 = Vmlm2~..12J . I7121113 t •  ~ It should be mentioned that if interacting molecules 
possess some symmetry then additional constraints exist for summation indices 
in (1.1). 

Further computational simplifications can be achieved while considering 
systems of rigid organic molecules. In this case, it is convenient to divide each 

2N • molecule in subsets of identical atoms and to evaluate RLM( t ,  X) in the 
coordinate system of the ith molecule, not for one interacting site, but for the 
whole subset of identical atoms x. If the interaction constant between the 
atoms of the xth and yth type is xy C2n, then (2.5) can be rewritten as 

ul11213 [ l~ 
mlm2(n)\*'12? 

z 1 z 2 ~ Z1111213 

p~O ~ lP(n) = Z Z C 2  y .2n+/1+/2+2P 
x= l  y= l  L-12 

Z I~OIII2R 2sl [ |  X) R 2s2 ( 9  
~OSlS2 . . l lml l ,  X, ..12m2K~, y) .  (2.13) 

Sl+$ 2 

Here z i is the number of different types of atoms in molecule i. 
Thus, expressions (2.11), (2.12) and (2.5) or (2.13) give the solution of the 

problem of asymptotical expansion for MI in the method of EPI. The 
convergence of these expansions depends on the ratio of aN • R L m ( t ,  X) tO Ra2 and 
consequently, as is clear from formulae (2.5) and (2.6), on the relation 
between molecular dimensions and intermolecular distances. Being written in 
the form (2.5), this expansion is convergent only when R12 is larger than 
molecular dimensions and we shall deal with only this case in what follows. 

Normally, only a finite number of terms in (2.5) or (2.13) is taken into 
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account. Because of the fact that these sets are of the Taylor  type, it is natural 
to keep,  after truncation, the terms not of similar rank l, but up to some power 
k = 2n + l I + l z + 2p of intermolecular distance. For example, for dispersive 

-6 
attractive forces, when the interaction between the sites is proportional to r12, 

we have 

(k-11-12-6)/2 l~l/lll213(P) 

H','2'3 ¢P ~ = ~2 "' ~,m2(3) + O(R12 ~) (2.14) 
~ mlm2(3)\~*121 1~6+11+12+ 2P , 

p=0 *'12 

where explicitly 

P P - s  1 z I z 2 

wllI213(P) : zllll213 E E R0/lI2 E E C2Yn R2Sl (1 ,x )  ''12m2 to y) 
' '  mlm2(3 ) ~Xp(n) u 0  SlS2 " ' l lm 1 , 

Sl=0 s2=0 x = l y = l  
(2.15) 

and I l l -  121 ~< 13 ~< 11 + 12. For Lennard-Jones  repulsive forces the summation 
in p to the same order  of accuracy should be performed up to ½ (k - l I - 12 - 
12). 

3. Transformational properties of molecular tensors 

Contribution of any interacting site into MI potential depends on its position 
and orientation in the molecule reference system. Various aspects of tensor 
transformations have been treated already by many authors. In classic papers 
[23,24] transformational formulae for Cartesian components of multipole mo- 
ments during translation are presented. In [25-27] similar formulae are derived 
for one-particle wave functions. In molecular options it is of common practice 
to use relations, connecting tensorial components of a special kind in coordi- 
nate systems with different orientation [28]. In this part we shall derive 
SO(3)-invariant relations connecting the components of generalized multipoles 
in the coordinate systems, different both in orientation and position. 

An arbitrary function p(r), satisfying the relation 

f d [ (  )12 r p r  < ~  

can be expanded into a set in spherical harmonics: 

p(r) = ~ ~ Plm(r) Ylm(~), 
1=0 Iml<_l 

(3.1) 
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where p(r) are defined in (2.3). On the other hand, for its Fourier transform 
we have 

p ( k )  = ~ Olin(k)  Y/re(k) = 1 2 f ,,m ~ 2  ~ ( - i )  t dr jt(kr) ptm(k) Ytm(fC). 
l,m 

(3.2) 

Here we have used Rayleigh expansion for the plane waves. For the second 
part of eq. (3.2) we have 

f Otto(k) = ~ dr r~t(kr) ptm(r), (3.3a) 
0 

and the inverse relation obtained in the same manner is 

plm(r) ----  4~r it f dk k~t(kr) grin(k). 
0 

(3.3b) 

As is known, translation in r-space results in the following transformation in 
k-space: 

p(n)(k) = exp( ika)  p(°)(k). (3.4) 

Here vector a is a shift of the new 'n' coordinate system relatively to the old 'o' 
one. Superposition of (3.4) and (3.2) with using Rayleigh expansion leads to 

p(")(k) = ~ ~ X/~ila[llaL-1]jta(ka) p~°),(k) 
I,l a m,ma,rn' 

Lo LM , D m,(a) (3.5) X Clo laoClml .maYlama(k )  

LM Here Ctml, ma are Clebsh-Gordan coefficients [20]. During the derivation of 
(3.5) the relation between functions Plm(k) in different coordinate systems has 
been used, 

Pt,n(k) = ~ p,m,(k) D~m,(12). ( 3 . 6 )  
l,,,q~t 

In (3.5) we introduced the short-hand notation 

[ Ibllb2... I b"] = (21 ,  + 1)b1/2(212 + 1)  b2/2 • • • ( 21 .  + 1)  b"/2 ~1 ~2 ) (3.7) 

and/2 stands for the set of Euler angles parameterizing the relative orientation 
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of the old and new systems. Superposition of (3.3b) and (3.5) leads to the 
result in r-space. Thus, in a straightforward way we obtain a generalization of 
formulae used in [23-29]. 

Further,  for tensorial fields QLM(k2), defined by the first formula (2.3), we 
obtain, inserting it in (3.5), 

a ~ ) ( k 2 )  = ~ ~ il"[12l]](--l)t+L ( 2 )  L-I  

l'la m.ma.m' VT~[L2]F(I + 3) Jr,(ka) °(°)tt'z'~t,,,,,.". , 

~LO ..-,LM ~ l  a z ^x 1 
)< {.~lOlaOl-.lmlamaLJmaOta) D m m , ( O  ) . (3.8) 

After  using a power set in (3.3a) as representation of the Bessel function we 
obtain 

p L M ( k ) = ~  iL[L](--1) "+L (k'~ 2"+L 2, 
~=o 8~rEs!F(s + L + 3) \ -~/  RLM " (3.9) 

Inserting (3.5) into (3.9) and comparing factors at similar powers of k we 
obtain transformation relation for generalized moments: 

2N (n) R LM = Z Z Z lzILlla .~ ala + En2 
U Nnln2~l +la,2(N-nl -n2)+L 

nl,n2=0 I,I a m,ma,m" 

-fi~(°),-,L0 ,-~LM ~ "  "~" O~, , , (O) .  (3.10) X l~lm, I...,,lOlaOl..,,llmamai..)maO~a) 

Here 

BL, .  = (-1)~+Lx/-'~[12lZ]N!F( N + L + 3) (3.10a) 
Nnln2 2 [ L 2 l n l ! n 2 ! F ( n , + l +  3 ) F ( n 2 + l a  + 3) 

It is worth to remind here that -I<~ rn, m'  <~ I, --1 a <~ m a <~ la,  and all other 
indices are natural numbers. Because of the fact that C~m~,,,, is non-vanishing 
only when II - lal <- L <~ l + l,,  the sums in (3.10) contain a finite number of 

---TK-(n) 
terms and this means that RLM can be determined with absolute accuracy. 

For conventional multipoles in particular, we have with n 1 = n 2 = N 

ala 
RLM ~-i(-}(n) : ~ L M  Z Z (--1)/a (21)!(21~)! 

l+la=L m,ma,m' 

n ( 0 ) r  TM n~° ~-~, D~m,(a) 
~( ~ lrn, ~ lmlama~ maO\U J (3.11) 

Transformation of interacting sites densities which possess spherical symme- 
try, is of particular interest because they are very closely related to the 
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atom-atom interaction potentials. In this case l =  m' =0  in (3.10) and thus 
L = la, M = ma and N = n 1 + n 2. Therefore, when the molecules are consti- 
tuted from the 'balls' we have 

2N (n) 
R L  M = L L a DMo(a ) ~ nLOL 2n2BZnl "(°) (3.10b) 

IJ  N n l n 2 a  1 (00  . 
n l + n 2 = N  

And for molecules which consist of interacting points, that is usual for 

atom-atom potential interaction, we have RZnl(°) --00 = 6n,,0P0 and consequently 

0c 

2N ,(n) f RLM = (--1)LaC÷2NDMo(?O PO, where P0 = dr rZPoo(r). (3.10c) 
0 

Formulae (3.5), (3.8)-(3.11) are basic ones for MI computation within the 
EPI method. For many classes of organic molecules additivity of their prop- 
erties, i.e. the possibility to represent them by the sum of the properties of 
their fragments, is characteristic behavior [8]. This makes it possible to extract 
from experimental data the components of fragment tensors [6-8,28-30] for 
subsequent MI computations with the help of (3.5), (3.8)-(3.11). In [19,28,29] 
only (3.6) has been taken into account during such computations, which is 
obviously not correct when one deals with interactions. As a result, quantita- 
tive and even qualitative contradictions can be observed in the comparison of 
experimental results concerning molecular structure and arrangement with 
theoretical predictions [31,32]. This can be illustrated by the helicoidal mole- 
cule model (see appendix B). Calculations in accordance with the usual optical 
additive scheme (3.6) give only the isotropic part, which corresponds to the 
spherically symmetric distribution of interacting sites and, consequently, to the 
absence of orientational correlations between such molecules in condensed 
matter. 

4. Numerical results 

To illustrate the method developed in this paper and to compare the results 
of different approximations, we could take some model molecules and follow 
the dependence of intermolecular forces on their separation and relative 
orientation. This would lead us to an enormously detailed multi-dimensional 
picture. But keeping in mind our main goal, that this approach is especially 
effective for treating interactions between large anisotropic molecules, we 
accepted another procedure. We have taken the typical mesogen p-n-pentyl- 
(p'-cyanophenyl)cyclohexane (PCH-5) and evaluated different contributions to 
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the interaction energy, based on the simulation data [33] of this substance 
under normal conditions. 

Simulation data were obtained by a molecular dynamics method with 50 
molecules in a box and periodic boundary conditions using the general 
simulation programme GROMOS [34]. Integration of the equations of motion 
has been performed with time steps of 2 fs. After 90000 steps every 100th 
configuration has been stored and 49 such configurations were taken for energy 
computations. For the simulation, the molecules were divided into 18 frag- 
ments ('pseudoatoms') CH n (n = 0, 1, 2, 3) and the N atom. The simulation has 
been performed under conditions corresponding to an isotropic state at 333 K, 
just above the liquid crystalline nematic phase. The density of the resulting 
ensemble (972 kg m -3) agrees well with the experimental value of 938 kgm -3 
[35]. The simulated molecular ensemble possesses a relatively high order 
parameter 0.264, which may not be surprising for such a small volume. For 
macroscopic samples the nematic-to-isotropic phase transition occurs at higher 
values of the order parameter. Keeping this fact in mind and the negligibly 
small value of P~ = 0.075 (which characterizes spontaneous polarization) we 
believe that this ensemble is sufficiently orientationally disordered. 

In order to make our results and conclusions more transparent, we per- 
formed all subsequent energy computations not with the interaction parameters 
used in GROMOS, but with the London approximation for dispersion interac- 
tions. So we adopted for atoms 

-6 (4 .1 )  U(r12 ) --- alc~2r12 , 

and computed the total energy in the system 

E-= ½ Z E E(i, j) , 
i j¢ i  

(4.2) 

where E(i, j) are given by (1.3). 
Fragment ('pseudoatom') polarizabilities were taken according to the Vogel 

system for molar refraction R (see fig. 1): 

3R 
= 4axN a (4.3) 

/ 4.b9 4.b9 5.65 
4.4 4.4 4.65 4.65 

Fig. 1. Molar refractions for the fragments of PCH-5 according to the Vogel system. 
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It should be noted that in this case the energy in (4.1) is a dimensionless 
variable. For  the benzene ring fragments we have taken the sixth part of the 
whole benzene ring polarizability and in the positions of substitution we 
subtracted the polarizability of the hydrogen atoms. The total molar refraction, 
obtained in the approximation of polarizability additivity is equal to 79.9, in 
good agreement with the experimental value 81.35 [35]. 

Because of the fact that we neglected the anisotropy of the fragment 
polarizability, it is implied in our model that fragments possess spherical 
symmetry and, consequently, only R°0 is non-vanishing in the coordinate 
system which is centered in a fragment. Taking this into account, for the 
determination of the components of generalized multipole moments in the 
molecular reference system, formulae (3.10) can be taken in the form (3.10c). 

Putting p(r) =- a(r) we can determine R2~t for the whole set of atoms in the 
molecule. Another  advantage of the representation of interaction in the form 
of (4.1) is that, after identifying p(r) with a(r ) ,  in our case C2 y = 1, and the 
computat ion of molecular interactions (formula (2.14)) is substantially sim- 
plified. The center of the molecular reference system was fixed in the center of 
the molecular polarizability and due to this, only moments with even L are 
non-vanishing. Several lowest rank components are presented in table I. It 

2N 0 should be noted that RLM are defined such that R00 coincides with the 
molecular polarizability. The R20 component  in our case is comparable in 
magnitude with R°0 and, consequently, one can suppose that their contribution 
to the molecular interaction energy is also comparable. So we can conclude 
that for strongly elongated molecules the effect of both these terms should be 

0 taken into account, while RLM with M ~ 0  contributes to a much smaller 
extent.  

For  the energy computations we have a truncated expansion (2.5) (or more 
precisely (2.14)) at terms proportional to R128. Thus, in our case, taking into 
account the identity of molecular scalar parameters 

2 
E ( 1 , 2 ) :  a °°°"°°°  1 o o Aooo.ooo 1 ROo(1) E 2 • 

"'o(3wooo ~R,2 R°°(1) R°°(2) + "'1(3)~001 ~ i=, R°°0)  

A022 R002 1 2 2 
+"o(3wooo-K-g-Ro°o( 1) E Z o • 2 ^ R2~(t) (4.4) D mo(r,2) , 

R I 2  i=1 m = - 2  

Table I 
Components of the generalized multipole moments for PCH-5 with 
Ro°o = 31.7 x 10 -3 nm 3 and R~oo = 6.05 × 10 -3 nm 5. 

M -2 -1 0 1 2 

Re(R°u) (10 -3 nm 5) -0.05 -0.04 4.82 0.04 -0.05 
Im(R°u) (10 -3 nm s) -0.01 0.01 0.00 0.01 0.01 
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0 • where the R2,,(t ) are taken in the laboratory fixed coordinate system and are 
different for different molecules, due to variations of their orientation and 
conformational flexibility. As it is clear from (4.4), we can distinguish three 
types of contributions to the total energy: isotropic molecular interaction (the 
first term), quadrupole interaction, arising from the elongation of our mole- 
cules (the third term), and a correction to the quadrupole interaction origina- 
ting from generalized multipole moments, which takes into account the fact 
that the interacting molecules have finite dimensions (the second term). 
Coupling between these three types of interaction appears only in the higher 
order terms. The results of the computation of the total energy in the system 
according to (4.2) and (4.4) are represented in table II. 

The data in table II are divided into 3 columns with different intermolecular 
separation. For example, in the first column contributions to the interaction 
energy from all the molecules separated not more than 2 nm are collected 
(molecular length is approximately 2 nm). As it is clear a priori, for small 
separations an expansion in the form (2.5) can not give agreement with the 
result obtained by direct summation of atom-atom interactions (last line). In 
this case it is even better to treat the molecules as isotropic points (first line) 
than to take into account non-central interactions. It is obvious that even the 
first anisotropic terms in this diverging set of multipole corrections lead to gross 
errors. This conclusion is especially important for anisotropic fluids, where the 
mesophase existence is caused by the anisotropic part of the molecular 
interactions. For densities usual for such substances, the multipole expansion 
gives errors of an order of magnitude larger than the estimated energy. 

With increasing molecular separations (second and third columns) the differ- 
ence between multipole expansion and the precise result is decreasing. The 
conventional multipole expansion is sign-alternating and therefore the result 
given by it is strongly dependent on the order of truncation. Nevertheless, 
some conclusions can be made, even from the distance dependence of the first 
term. It is seen, for example, that its contribution is decreasing more quickly 

Table II 
Contributions to the molecular interaction energy for PCH-5 arising 
from different terms in (4.4). In different columns we gathered 
contributions from the molecules with different intermolecular sepa- 
ration. 

Separation (nm) <2 >2 >4 

I term 2.4917 0.0852 0.0278 
II term 6.9256 0.0255 0.0042 
III term -12.2115 0.0011 0.0001 

Pseudoatom-pseudoatom 
interaction 3.9319 0.3555 0.0408 
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than that of the generalized multipoles. For isotropic surroundings it vanishes 
completely, in contrast to the generalized multipoles. Even the scalar part of 
the latter ones contribution into the total energy is of the order of twenty or 
thirty per cent and of course they should be taken into account. It is evident 
that this contribution partly covers the difference between interaction energies 
for the cases where molecules and atoms are treated as interacting sites. This 
shows that the anisotropic part of interactions is rather small even for typical 
mesogens. 

5. Conclusions 

The analysis of the numerical results for the multipole expansion of the 
molecular interaction energy has shown that the difference between the 
conventional multipole expansion and a more complete one, obtained in this 
paper, is sufficiently large for liquid densities. The neglect of this difference can 
lead to large quantitative and even qualitative errors. While the results for 
large intermolecular separations are encouraging, much should be done for 
re-summating this expansion in order to ensure its convergence for the nearest 
neighbors interactions in liquids consisting of anisotropic molecules. 
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Appendix A. Asymptotics of the Fourier-Bessel transformation 

An asymptotical expansion of 

J = f dk k~l't(kr) ¢(k) 
o 

(A.1) 

at r-->oo should be found. After the substitution of an integral representation 
for Bessel functions [22] 

1 

(~z)' t2), Jr(z)- 21! f dtcos(zt) ( 1 -  
- 1  

(z = kr), (A.2) 
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into (A.1) (we suppose that the conditions of Fubini's theorem are fulfilled) 
and changing the order of integration we have 

1 ; 
f l J = dt ~.I (1 - t2)t(½r)' dk  k a+l exp( ikr t )  6 ( k ) .  

- 1  0 

(A.3) 

With the help of the Riemann-Lebesgue lemma for the first integral in (A.3) 
we have 

f ( i ]  ~+' d~ k a+t k d k k " + ' e x p ( i k r t )  ~b(k) = ~ \ ~ /  ~ [ ~b( )]]k=0 
S = 0  

0 

( i)  p+O+I+I F(p+a+l+l)  
= ~ \ ~ /  p! ~b(P)(O) ( r -+m).  

p=l+a 
(A.4) 

After this, in the complex t plane following Cauchy's theorem we deform the 
contour of the integration in (A.3). For the integral 

( 1 - t 2 f  
J ' =  ~ ~-+-i--77r dt 

¢ 

using Jordan's lemma in the limit of infinite radius of integration contour we 
have 

0, 

J ' =  (-1)' r(½(p + a + l + 1)) 

t!F(½(p + a - l +  1)) ' 

p + a + l +  1 = l ( m o d 2 ) ,  

p + a + l + 1 =0  (mod2) .  
(A.5) 

Substituting (A.5) and (A.4) into (A.3) we finally obtain 

oo 

J =  ~ A p r  - p - a - l  (r--->oo), 
p=O 

r(½(p + 1 - l + 1))2P+~-'x/--~ 
where Ap = p ! F (  1(l - p - a + 2)) #~)(0). 

Appendix B. Helical molecular model 

Let us consider as a model molecule a set of balls placed in a helix. In 
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principle, such model can be further modified using the results of section 3 of 
the paper  in order  to treat interactions between bio-molecules. So we define h 
as a helix pitch and R as its radius, b is a ball radius and h is the distance 
between them, h = h/2~r, qb is an azimuthal angle and L is the length of the 
helix along its axis. In these notations the positions of the balls in the 
coordinate system fixed in the center of symmetry of the helix are given by 

x = R cos ~b, y = R sin ~b, z = h~b . 

In the coordinate system fixed in the ball center only Poo(k) differs from zero 
and if the ball is homogeneous,  straightforward calculations give 

b 2 

Poo(k)- v~3k  j , (kb) .  (B.1) 

After  applying (3.5) twice, first for radial translation and then for translation 
along the helix axis, we have 

Otto(k) = 4"rr ~ i6+6Poo(k ) j~,(kR) ~ll+m,2 s 
l 1,12=0 

r a° r l'~ r~6 to ½"tr, 0) S (B.2) X ~llOl20~llml20~mOkV~ 

Here  

S = 
N 

exp(- im~b,)  j,2(klaJ)[sgn(~b,)] '~ , 
n = - N  

2N + 1 is the number of balls in the helix (it is assumed that one of them is 
placed in the plane z = 0 ) ,  s is a natural number,  [azn[-[nah[=[n[Ah/ 
(R 2 + h2) 1/2 is the distance of the translation along the z axis for the nth ball 
and ~n is its azimuthal angle; ~n =na,  where a = A / ( R 2 +  h2) ~j2 is the 

azimuthal angle between neighboring balls. Taking into account these nota- 
tions we can rewrite 

N 

S = ~ e x p ( - i m n a )  y,2(klnlah) [ s g n ( n ) ]  6 . (B.3) 
n = - N  

The limit of large N, i.e. when A ,~ (R  2 -I- h2) 1/2, is of the most interest. In this 
case one can change the sum in (B.3) into an integral, i.e. to keep only the first 
term of the Euler -MacLaur in  formula. Then we have 
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S~--2i(~12,2p+ 1 f d x s i n ( a m x )  j,2(kahx)+ 6t2,2 p dxcos(amx)jt2(kahx) 
o o 

,(m) "rr i12+ (B.4) 
erE -'~ , 

where Pt is a Legendre polinomial. The inequality O< Imal < kah should be 
fulfilled. Finally, in the limit of infinitely large N we have 

4Ab2 ~ iq+~(-1) ~2 [-/[@];-] jt~(kR) 
p,,,(k) = ~/hk3(R2 + h2 ) q J2 =0 

( m )  rl° rim /~ll (I) 1TI', 0) (B.5) x jq(kb) P'2 -~  ""'lO120~tlm12 O~mOk'' 
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