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LIFETIME OF IMMEDIATE ENVIRONMENT OF ATOMS IN A
LENNARD —JONES LIQUID

N. N. Medvedev, A. Appelhagen, and A. Geiger UDC 541.124.532.74

The nature of the relative motion of atoms in liquids determines many physical and chemical processes occurring
in liquids. Computer simulation provides excellent possibilities for studying the mechanisms of these motions. The
molecular dynamics method, which has already become standard in chemical physics (see, for example. [1]), gives us the
coordinates and velocities of the atoms in the model under study at successive moments of time. A detailed analysis of this
information allows us to study the fine details of the molecular motions, including those currently inaccessible to physical
experiment. On the other hand, owing to the use of plausible interparticle interaction potentials and numerical solution of
the equations of motion, computer simulation avoids the quite rough approximations inevitable in analytical treatments [2.
3L

Recently in (4] the time variation of the immediate environment of atoms was investigated in a molecular dynamics
model of a Lennard —Jones liquid close to the triple point. It was shown that the structural characteristics of the immediate
environment, defined by the topological (number of faces) and metric (volume) characteristics of the Voronoi polyhedra.
vary rather rapidly. Their autocorrelation functions fall off to zero practically as the autocorrelation function of the
modulus of the velocity of the atoms (in approximately one picosecond). On the other hand. a change in the geometric
neighbors of the atom occurs significantly more slowly. After a time on the order of 4 picoseconds. half of the old
geometric neighbors are preserved around each atom on the average (about seven atoms). Thus it was shown that the
amplitudes of atomic motion after a few collisions are sufficiently large to change the appearance of the immediate
environment, while real translations are due to slower diffusion processes.

In this paper, we have investigated in detail the process of the change in the atoms in the immediate environment
in liquid argon at different temperatures and densities, and we derive quantitative parameters describing this change. By
considering all pairs of nearest neighbors simultaneously, we can observe the "macroscopic” appearance of this process and
determine the time of existence of their old nearest neighbors in a percolation cluster model.

The molecular dynamics models were obtained on an [BM RISC/6000 work station. We used a program based on
the Verlet algorithm, maintaining a constant temperature by scaling the atomic velocities [5]. The parameters of the
Lennard —Jones potential corresponded to argon (¢ = 3.405 A, ¢ = 119 K), the integration step was dt = 0.002
picoseconds. Each model contained 500 atoms in a cube with periodic boundary conditions. The temperatures and densities
of the studied models are presented in Table 1. In each thermodynamic state, the model first relaxed from the last
configuration of the preceding state over the course of 10-20 thousand steps (the thermodynamic characteristics practically
20 the steady-state values in 1-2 thousand steps, but for a complete transition to the equilibrium state a somewhat longer
time is needed), after which the molecular dynamics process was continued for 20-40 thousand more steps and we
performed our analysis on these configurations. The self-diffusion coefficients (Table 1) were determined as usual from the
slope of the time dependences of the mean-square atomic displacements.

For simple liquids, where there are no separate physical interactions between atoms, it is appropriate 0 determine
the nearest neighbors using Voronoi polyhedra [4]. However, in our analysis this proved to be laborious (for a complete
analysis of only one model, we need to calculate more than a million polyhedra). Therefore in order to save computer
time, we use a very simple test. We consider atoms as nearest neighbors if they lie no more than rp,,, = 1.60 from the
central atom. This distance approximately corresponds to the position of the first minimum in the radial distribution
function: furthermore, the average number of nearest neighbors is close to the average number of geometric neighbors of
the atom determined using Voronoi polyhedra.
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TABLE 1. Parameters and Claracteristics of the Models

No. T || 5 D [cm-/sec) x 107 .. psec | (N@O@) | po
{ 1.0 | 0.82 3.30 i2.18 13.12 0.103
(0.82) 0.07 (0.011)
2 0.7 | 0.82 2.29 14.88 13.08 0.101
(1.01) (0.03) 0.015)
3 0.5 | 0.82 1.12 26.18 13.08 0.103
(1.38) (0.03) (0.011)
4 1.0 | 0.91 1.94 18.93 14.11 0.097
(1.22) 0.07 (0.014)
5 0.8 | 0.91 1.20 26.27 14.10 0.100
(1.13) (0.05) (0.012)
6 0.7 | 091 0.97 31.91 14.01 0.095
2.12) (0.06) (0.025)
7 0.6 {091 0.63 41.66 14.01 0.105
(0.85) (0.04) (0.013)

Notes. T" and p" are the reduced temperature and density; D) self-diffusion coefficient:
to) critical time. (N(0)) is the average value of the number of nearest neighbors at time
zero; p.?) is the critical fraction of preserved pairs of nearest neighbors at the moment the
percolation cluster disappears (see text). Within the parentheses we give the mean-square
deviations of the corresponding parameters upon averaging over eight independent zero
times (start of the time clock).

At some moment of time chosen as the initial moment (zero time), for each atom of the model we store the
positions of all of its nearest neighbors. Thus formally between each pair of nearest-neighbor atoms 2 bond is established,
defining a neighborhcod. As a result, for the given configuration of the model we obtain a network which can be called the
“network of neighborhoods.” We note that for a simple liquid. this network is close to the Delaunay network for the same
configuration of the model [6]. Approximately 14 bonds converge at each vertex of the network, on the average. After the
initial network of neighborhoods is obtained, we go on to consider subsequent configurations of the studied model. At each
subsequent moment of time (every 40 molecular-dynamics steps), we again examine the nerwork of neighborhoods. As a
result of motion of the atoms, over the time that has passed some neighbors have gone beyond the limits of ry,,,, so the
new network of neighborhoods is already different from the original one. Comparing the old nerwork with the new
network, we determine which bonds of the initial network have disappeared and thus determine the lifetime of these bonds,
which is taken to be equal to the instantaneous time at which this configuration exists. Scanning the model over a
sufficiently large time interval, we learn the lifetimes of all the pairs of nearest neighbors. We considered the effect of the
size of the scanning step on the value of the lifetime of nearest neighbors. We found that if the scanning step is not greater
than the interval of “kinetic” motion of the atoms, i.e., if it is less than the first zero in the autocorrelation function of the
velocity (approximately 120 molecular-dynamics steps), then the results are practically independent of the specific scanning
step size. We emphasize that in this paper, we neglect repeated approaches of neighbors; the immediate neighborhood is
cut off only once.

For each time ¢ from the zero time, bonds in the initial network of neighborhoods whose lifetime is less than the
indicated time t are considered as broken bonds. Obviously, there exists some critical time t = t. at which the cluster of
remaining bonds is so depleted that it is decomposed into (finite) disconnected clusters. Following the terminology of
percolation theory, let us call this time ¢, the "critical time." It is in some sense a macroscopic characteristic of the system,
since it indicates the moment at which the percolation cluster (penetrating the entire sample) disappears in the system. The
presence of such a cluster means that if we were to have a model of macroscopic dimensions, then for the given fraction of
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Fig. 1. Critical time t_ of the studied liquids vs. reciprocal self-
diffusion coefficient, measured in A%/psec.
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Fig. 2. Change in the relative number of "old" nearest neighbors
over time in units of t.. The numbering of the symbols
corresponds to the numbering of the models in Table 1 (first
column). The symbols are heavily superimposed on each other.
Data was not obtained for some models for times close to 2t..
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Fig. 3. Distribution of the number of "old” nearest neighbors at
atoms at different moments of time. Solid line) for the most
mobile of the studied liquids (No. 1 in Table 1): dashed line) for
the least mobile liquid (No. 7).
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intact bonds we would have a connected cluster, penetrating the entire macroscopic sample. Thus the time ¢, means the
moment of disappearance in the system of the macroscopic formation of atoms which have remained nearest neighbors up
10 this moment.

The values of ¢ found for our models are presented in Table 1. The presented values for each model are the result
of averaging over eight independent calculations (differing in the selection of different zero moments of time), as which we
chose successive configurations of the model separated by 2000 molecular-dynamics steps (4 picoseconds). The mean-
square deviations indicate that we have the values of the critical times to accuracy no worse than 6%. In Table 1. we also
present the threshold fractions of intact bonds p.2. Within the error limits. which here are relatively high, they coincide for
all the models and are approximately equal to 0.10. This is the typical order of magnitude for networks with high

connectivity (see. for example, (M.
In Fig. 1, we present the dependence of the critical time on the reciprocal self-diffusion coefficient. We see that all

our models fit rather well on a single straight line:

t.=a+p/D, )

where for measurement of the time in picoseconds and the self-diffusion coefficient in square angstroms per picosecond,
o = 6.0, and 8 = 2.35.

Knowing the lifetime of all the pairs of nearest neighbors, it is easy to determine how the average number of “old”
neighbors for an atom decreases with time. Figure 2 illustrates the time dependence of the logarithms of the ratio
(N(D)/(N(0)) in units of the critical time 1. Here (N(1)} is the average (over all the atoms) number of nearest neighbors
preserved up to time t; (N(0)) is the average number of neighbors for the zero-time configuration of this model. All the
points fit very well on a single straight line. This means that in the considered interval. the immediate environments of the
atoms decay exponentially with the same characteristic time

1=0.452¢,.

The value of 7 can be given the meaning of the average lifetime of a neighbor in the immediate environment of a given
atom. By virtue of Eq. (1), it also is a linear function of the reciprocal self-diffusion coefficient. At zero time, these
distributions are close to the distributions for geometric neighbors determined from Voronoi polyhedra [8]. The fact that
the distributions of the models do not coincide is due to some differences between the structures of the immediate
environment of the atoms in a dense and less dense liquid.

At time /4, seven neighbors still remain per atom on the average. At approximately this moment, the maximum
width of the distribution occurs: a spread from 2 to 12 neighbors. Att = t., more than 20% of the atoms have completely
lost all their old neighbors, while most of them only lose one. Moreover, there are atoms which keep four or even five
neighbors. It is interesting to note that at nonzero times, the distributions for the different models match significantly
better. Here the determining factor is probably not the structure of the immediate environment, but rather the rate of
change in the old neighbors, which as we see is universal in units of ¢..

Thus we can say that not only the average (Fig. 2) but also the overall character of the change in the immediate
environment (Fig. 3) is the same for all the models; i.e., it does not depend explicitly on either the temperature or on the
density, but rather is determined by the average mobility of the atoms.

Let us emphasize that the observed fact of exponential decay of the immediate environment is nontrivial, although
formally this law obviously is obtained assuming that the neighbors leave the immediate environment independently and
that a common "sedentary lifetime” exists, similar to that postulated by the simple Frenkel model [2). Our data are
obtained from analysis of molecular-dynamics models, and in this sense the observed exponential decay is an experimental
result, free from such assumptions. We also note that the neighbors do not leave the central atoms in the liquid in a
jumpwise fashion [2]. A detailed consideration of the molecular-dynamics models allows us to say that atomic jumps,
although they do occur, are not the determining factor in the overall picture of atomic motions. In {9), where this point
was especially examined, it was shown that rapid ranslations to distances comparable with the size of an atom can be
isolated as a separate type of motion only when the liquid goes to the glassy state.

This work was done with the support of the Humboldt Foundation (Germany). The author would like to
acknowledge Professor Yu. I. Naberukhin, Doctor N. L. Lavrik, and S. A. Anishchik for useful discussions.
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