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To obtain the chemical potential of a model liquid, Widom’s [ 1] particle insertion method was implemented
using a standard MD-program and a newly developed Delaunay-simplex-sampling technique. The DS-
sampling method leads to accurate results, at significantly higher computational efficiency than provided by
other methods for the high density domain.
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1 INTRODUCTION

Widom’s [1] test particle insertion method is a simple way to calculate the excess
chemical potential of a system of interacting particles. One advantage of this method
is that it can be easily integrated into existing molecular-dynamics (MD) or
Monte-Carlo (MC) programs. Moreover, the particle insertion method has the
advantage that not free energy differences are calculated; rather it determines
the absolute value for the excess chemical potential. Most sampling methods that
make use of the particle insertion technique give accurate results for the low density
region of fluids. For the high density region, however, they are either of low statis-
tical accuracy or computationally inefficient. The reason for this is the low occur-
rence of relevant insertion sites within a configuration at high liquid densities. The
statistical accuracy of most sampling methods therefore decreases as the density
increases.

The purpose of this paper is to present a new sampling technique that can be applied
to high liquid densities with significantly reduced computational cost relative to other
methods. It is based on the well known Voronoi-Delaunay construction used in
computational physics [2-5] and represents a purely geometrical approach to locate
the “holes” within a given configuration comprehensively with minimal computational
effort.
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METHOD

For the test particle method, the excess chemical potential u,, = u — p,4 in a canonical

ensemble is given by
U t; N
o= — kJ!n(exp[—%D 1)

where U(g'; g¢") is the potential energy of a fictitious test particle placed at ¢* within the
N-particle real system. The notation (g% q") implies that the test particle does not
modify the configuration of the N-particle system, that is, the test particle measures its
interaction with all N particles, but has no influence on them. The angular brackets
indicate a twofold averaging: in addition to the ensemble or time averaging over the
configurations of the N-particle system, an averaging over the test particles position ¢'
is done, assigning equal weight to equal elements of volume.

In an unbiased Monte Carlo procedure this volume average can be calculated by
placing a test particle into the central box at randomly chosen sites. Unfortunately, for
liquid densities a strong overlap with real particles is highly probable. That is, the
contribution to the average in equation (1) is negligible for most test sites leading to
very poor statistics. Over the years many sampling methods have been developed to
overcome this problem (see for example [6-8]). Most of them, however, are restricted
to intermediate liquid densities. We apply a new approach which geometrically
examines a configuration for suitable locations and holes where the test particle
predominantly contributes to {exp[ — (U(g"; ¢"}/(kzT)1>.

For the molecular dynamics ensemble (NVE), the temperature is a fluctuating
quantity. In this case, expression (1) becomes [6]

hoom — kp(T> I {(T) -312 <exp[_ U::’;EI?N)] T,?lz>} (2
i

where T; is the temperature of configuration i as determined by its instantaneous
kinetic energy. The angular brackets now comprise microcanonical averaging over the
original N particle system.

A Voronoi-polyhedron (VP) is constructed by drawing a plane perpendicular to the
connecting line between neighbouring particles i and j at one half the distance between
the particles. In three dimensions this procedure gives a unique polyhedron around
each particle in a given configuration (dashed lines in the two-dimensional example of
Fig. 1). Each vertex of a VP has the same distance to four surrounding particles, since it
is the intersection of four equidistant dividing planes. These four particles, from which
the vertex is equidistant, form a so-called Delaunay-simplex (DS) (full lines in Fig. 1),
the vertex of the VP obviously being the center of a circumsphere of the DS. As this
center is the place which is most distant from all four neighbors, it is likely to be
a suitable location for a non-overlapping test particle insertion. Moreover the De-
launay-simplices of an arbitrary system of particles cover the whole volume of the
system in a spacefilling way, without any overlapping or gaps. There are special
algorithms to construct the Delaunay tesselation, see e.g. Refs. [4,5,9]. For our
purpose, it is sufficient to know which particles form a simplex, the coordinates of the
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Figure | Centers of Voronoi polyhedra (dashed lines) which have a commen vertex form Delaunay
simplices (full lines). The vertices of the VP are centers of circumspheres of the DS with radius Rpg. All
Delaunay simplices cover the space without overlapping or gaps.

circumcenters, and the values of the respective radii. The algorithms and programs to
obtain this information have been developed earlier to study the structure of liquids
and glasses [9, 10].

For the moment it is assumed that the particles are spherical or nearly spherical and
all real particles have identically sized spherical “hard cores”. This gives a radius Ry,
which defines an excluded volume for the test particle (see also Ref. [8]). If we know the
circumsphere radius for a given DS, then it can readily be determined whether or not
this DS is suitable for insertion. That is, using the Delaunay tesselation the integration
over the whole space can be split into the summation over the Delaunay simplices.
Knowing the circumsphere radius R, (i) of the i-th simplex, one can determine whether
thereis free volume in this simplex or if it is fully covered by the spheres. The latter holds
for Rps(i) < Ry, Therefore we can easily distinguish the Delaunay simplices for which
no integration is needed. This gives a substantial saving in computer time for dense
systems where a major part of the DS is excluded. If a Delaunay simplex is suitable,
a three dimensional, cubic grid with spacing Ar is constructed in the free volume of the
DS (Fig. 2); each of the grid points are subsequently used as insertion points for a test
particle, to calculate exp[ — U(q*; g")/(kT)]. This is then repeated for all DS and the
procedure applied to every sampled configuration. The hard sphere radius of the cores
Ry has to be chosen in advance on the basis of the interaction potential to make sure
that all contributions to equation (1) or (2) from points inside the core can be neglected.
By tuning the core diameter and Ar one can scan a given configuration for all its “holes”™
and suitable locations. The integration points can be written to a special array or file for
further usage.

This method is computationally efficient, since only simplices with free volume are
sampled and within these simplices little time is spent calculating potential energies
that are extremely large and therefore contribute insignificantly to equation (1) or (2).

To ensure the reliability of the new sampling method for all liquid densities, we
calculated the excess chemical potential of a homogeneous Lennard-Jones fluid at state
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Figure 2 Constructing a cubic grid with spacing Ar in the free volume of a Delaunay simplex.

points which have been investigated previously by other methods. In the present study,
particle configurations were generated by a standard NVE-MD program for a
Lennard-Jones fluid, assuming pairwise additivity of the intermolecular potential and
periodic boundary conditions. Newton's equations were solved by the Verlet algorithm
[11] using a timestep for the integration of 105. The cutofiradius R, was equal to half
the box length of the system (L/2). To test the dependence of the results on the number
of particles, simulations were carried out for systems of N = 108, 256, 500 and 864
atoms. The atomic mass and the Lennard-Jones parameters were chosen to represent
Argon: o = 3.42A and e/k, = 124K.

For each thermodynamic state, a minimum of 10 (maximum of 100) independent
configurations were examined. These were obtained by first running the simulation
until equilibrium was reached. After equilibration, the simulation was continued,
recording and examining a configuration every 1000 time steps. To ensure decorrela-
tion, in this case, smaller seperations between the sampled configurations would have
been sufficient. The hard core diameter, needed for the DS-method, was chosen to
Rys=284 A. The grid point distances varied beteen 0.6 and 0.1 4, depending on the
density (Table 1). The long-range-corrections were computed using the assumption
that for r > R_,, the fluid is homogenous with the bulk-density p. For the chemical
potential, the cutoff-correction for the Lennard-Jones-potential is then given by

Heorr _ 161p0%[1(20) (263 )
kyT~ 3kgT |3\ L L) | ‘
RESULTS AND DISCUSSION

The excess chemical potential g, of the Lennard-Jones fluid was calculated using the
test particle method together with the new sampling method described above. This was
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Density p*

Figure3 Density dependence of the excess chemical potential (u,, /k s T) for a LJ-fluid along the isotherm
T* = 1.2. The full line represents the results obtained by thermodynamic integration [12, 13, 19]. The
diamonds show the values computed with the particle insertion method using our DS-sampling method.

done for the isotherm T* = 1.2 and densities in the range 0.2 < p* < 0.9 (expressed in
reduced units). The results are summarized in Fig. 3 and Table 1. To test the reliability
of the new sampling method, the results are compared with results obtained by several
other authors. At high densities the most accurate data have been obtained by Verlet
and Weiss [12] using the thermodynamic integration method, where 4, is calculated

by

Mo °f P dp’ P

kgT fo(PlkBT 1) 4 +(Pk8T 1). @
They computed g, along the T* = 1.15 isotherm. The T* = 1.2 isotherm was deduced
from their data by Guillot and Guissani [13] using a first order expansion. These
converted values (read lrom Fig. 1 of [13]) are given in the last column of Table 1.
Column 5 of Table 1 contains values derived from an equation of state for the
Lennard-Jones fluid [14], whereas the results in columns 6 and 7 are also from particle
insertion studies [13, 15, 16].

For the density region 0.2 < p* < 0.7, all sampling methods deliver fairly accurate

results(see Table 1). Above p* = 0.7, however, the valuefor u,/k T is overestimated by
most insertion methods. In this region the integration method is believed to be exact
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Table1 Values of the excess chemical potential (,,/k s T) for the isotherm T* = 1.2 for a LJ-fluid computed
via the particle insertion method using the new DS-sampling method (column 4). p* = po® and T* =k, T/e
are the reduced density and temperature. For the density domain p* < 0.7, 10 configurations were sampled
per state point. For p* > 0.7, 100 configurations were sampled per state point. Column 2 is the number of
particlesin the box; column 3, the box size; column 5, fi,, calculated by Nicolas et al. [14] using an equation
of state; column 6, By, obtained by Guillot and Guissani [13]; column 7, B, obtained by Heinbuch and
Fischer [15]; column 8, fiu,, obtained by Kolafa ct al. [18]; column 9, S, obtained from thermodynamic
integration [12], converted to T* = 1.2 by Guillot and Guissani [13] (sce text).

p b kT kaTeos \KaThoe \ooThur  \kaThew  \kaTJms
02 108 27.8499 -1.3344+0.001 -1.32 -1.34 -1.31 —1.34
04 108 22.1045 -21754£0.062 -2209 -227 ~2.14 -220
04 256 29473 ~2153+4+0.050 =213

04 500 36.8408 —2.182+0.034 -2.15 =216

04 864 44.2090 -2177+0013

0.6 256 25.7467 —247240.145 -—-2522 =246 -245
06 500 321834 —~2487+4+0.030

0.7 108 18.3429 ~1.9504+0.210 -1987 -1.74 -1.69 -195
0.7 256 244572 -20111+0.028 —~2.00 - 1.87

0.7 500 30.5072 —-1.997+0.057 -1.92 -1.91

0.7 512 —1.957

0.7 864 136.6858 —1.981+0.053

08 500 29.2406 -~0.718+0.062 -—0.692 ~0.48 —0.69
08 512 ~0.689

0.85 500 28.6556 0.4164:0.156 1.14 040 0.40
085 512 0.384

09 500 28.1148 1.779+0.206 1.723 1.80
09 512 1.862

within a few percent. To test the reliability of the new method in the high density
domain, simulations were performed at densities p* = 0.70, 0.80, 0.85 and 0.90. Even in
this region, our results only differ by a maximum of 4% from the results of the thermo-
dynamic integration method, which is considered to be the most reliable, but of high
computational expenditure. In contrast to this, the DS sampling scheme needs very
little computational expenditure. As example, using Ar =04 A at p* = 0.7 for N =256
particles, the total number of grid points in the box would be 2.3 x 10°, but only about
8.5 x 103 of these grid points are sample points in the free volume of the Delaunay
simplices and have to be considered to calculate u,, (see Table 2). Moreover, the
number of configurations which had to be examined by our method to achieve
reasonable convergence for y, /k; T was very low, 10for p* < 0.7 and 100 for p* = 0.80,
0.85 and 0.90. Other sampling techniques require orders of magnitude more sites or
have to sample thousands of different configurations, resulting in much higher compu-
tation time. The reason why only so few configurations have to be examined is because
using the DS-sampling technique, the total free volume is sampled comprehensively
with very high efficiency. In Figure 4 the convergence of the calculated excess chemical
potential with the number of examined configurations is shown for the density
p* =0.80 and p* = 0.85. Satisfactory convergence is achieved after approximately 30
sampled configurations. To assure that each configuration was independent of its
former, that is decorrelated, a configuration was sampled only every 1000 timesteps;



Table.2 Example for the sampling efficiency of the particle insertion method using the new DS-sampling
method for systems with different numbers N of particles and different densities. N is the number of sample
points per configuration in the free volume, constructed by the DS method. In the last column, the ratio of
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total volume to the sampled volume, as calculated by the number of grid points, is given

p* N Ng R%, total grid points/sampled grid points
04 108 23328 3.2317 7.2
04 256 55808 4.3089 7.2
04 500 108873 5.3861 7.2
04 864 190080 6.4633 7.1
0.7 108 3594 2.6817 26.8
0.7 256 8492 3.5756 269
0.7 500 15957 4.4695 280
0.7 864 27648 5.3634 279
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Figure4 Running average of the excess chemical potential calculated for p* = 0.8 and p* = 0.85. Conver-
gence with numbers of sampled configurations.

a value, which can certainly be reduced, if simulation time has to be saved, which is the
most time consuming part of the calculation. The time needed to simulate N = 500
particles for a period of t = 1000 timesteps (on an IBM/RS600-320) is 475 seconds.
The DS-sampling method takes 235 seconds to examine the resulting configuration

Number of sampled configurations

(T* = 1.2; p* = 0.85) and calculate g,,.
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In summary, the new DS sampling method allows the application of the particle
insertion method up to the highest liquid densities, with very reasonable expenditure of
computation time. This is due to the complete and efficient recording of favourable
insertion sites. As only a few statistically representative configurations have to be
analyzed with relatively coarse grid, this demands only a fraction of the computing time
needed for the original simulation run. It should be noted that the chemical potential of
solutes at infinite dilution can be calculated with the same procedure as applied here for
the pure Argon fluid. The DS sampling scheme should also be very helpful for cavity
studies [17]. The problem of liquids which are mixtures of particles with differently
sized “hard cores” needs more complex construction methods, which are developed
presently.
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