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The tumbling molecular motion in mesomorphic systems in discussed, based
on a molecular dynamics computer simulation of a typical mesogen PCHS
within the united atom approach. It is shown that conformational molecular
flexibility plays an important role not only in the orientational distribution of
the molecules in the mesophase, but also in their dynamics. Being subjected to
strongly fluctuating intermolecular forces, the relative position of the atoms in
the molecule exhibit rclaxation in the same time-scale as the intermolecular
torque, which is much shorter than expected from the corresponding molecular
moments of inertia. This results in a very fast short-time decay of the re-
orientational autocorrelation functions of the molecule fragments. In spite of
this rather complicated picture, cage models can be used to fit the re-
orientational autocorrelation functions. For a more precise fit to the experimental
functions one has to account for the real distribution function of the cage
potential curvature.

1. Introduction

Since the first studies of molecular rotation in liquid crystals [1], there has been
a lasting interest in this field. It is established now [2] that the re-orientation of the
molecules in the mesophase can be described well by orientational diffusion modcls
for motions in media with partial translational and orientational order (sce Chapter
3 in [2] and references thercin). This enables a fairly good interpretation of
spectroscopic data obtained by NMR, ESR, steady statc and time resolved polarized
fluorescence, dielectric relaxation, and vibrational band-shape measurements (sce
corresponding chapters in [2]). Recently, femtosecond spectroscopy has provided
some evidence for the existence of some fast motions in substances consisting of
molecules similar to mesogens [3. 4]. The same featurc was observed for mesogens
themsclves [5]. Experimental studies of different optical properties with both time
resolved [3. 4] and steady state [5] methods revealed the oricntational nature of
these movements, and encouraged more detailed studies in this field.

We use the method of molecular dynamics computer simulations [6], a technique
which provides the time evolution of the system explicitly. We have reported such a
study for a typical mesogen p-n-pentyl-( p'-cyanophenyl)cyclohexane (PCHS) [7] and
showed that computer simulations enable a detailed prediction of the molccular
properties of rcal mesogens even for smail mesogenic systems. In this paper we usc

0026-%976 95 $10.00 ¢ 1995 Taslor & Franas Ltd



1100 S. Ye. Yakovenko et al.

this method to study the origin of the femtosecond relaxation of the orientational
autocorrelation functions (CFs) of mesogens. We use PCHS as typically representative
of this kind of substance, but an extension of our conclusions is straightforward.

More generally, our work aims to find more appropriate models than the
diffusional ones, to describe molecular re-orientation in the whole time interval
available from contemporary experimental methods.

2. Simulations

Simulation data for PCHS5 were obtained by the molecular dynamics method
with 50 and 100 molecules in a box with periodic boundary conditions using the
general simulation program package GROMOS [8]. For the simulation, the
molecule (1) was divided into 18 fragments (‘pseudoatoms’, CH,, n =0, 1, 2, 3} and
the nitrogen atom. The intra- and intermolecular interaction parameters were taken
from GROMOS, except for the charges of the cyano fragment which were 0-28¢ from
the parameter set of GROMOS [8], or 0-5¢ [9]. Details of the simulation procedure,
interaction potential and the treatment of the simulation data can be found in [10].
Several systems with different numbers of molecules and different partial charges
have been simulated. Their main features and the notation used hereafter are
summarized in table 1. Both the isotropic and nematic phases were simulated at the
same temperature, 333 K, just above the transition temperature of the real substance.
The exact transition temperature of the model system is not known, but no drift of
the order parameters towards the phase transition was observed. This is an obvious
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Table 1. The main parameters of the simulated ensembles.

Number Partial charges
Notation Phase of molecules of the cyano group (P
Iso isotropic 50 0-50¢ 0-216
Rigd isotropic 50 0-50e 0215
Neml nematic 100 0-50¢ 0-706
Nem2 nematic 160 0-28¢ 0-687

Nem3 nematic 50 0-50e 0-640
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indication of the limited size of the simulation box in treating macroscopic propertics
but. as has been shown in [7], this only has a minor effect on the local properties,
and even the correct values of various order parameters can be obtained from the
simulation data after re-scaling.

3. Results and discussion

Before starting to discuss the results derived from the molecular dynamics
simulations, some remarks should be made about different definitions of the rotating
molecular frame. From the theoretical point of view it is natural to connect the axes
of the intrinsic molecular system with the principal axes of the molecular moment
of inertia cllipsoid. However, probably its movement can be observed only in neutron
scattering experiments. Using optical or spectroscopic methods, one is restricted 10
the motion of some part of the molecule. In infrared or Raman spectroscopy one
observes some characteristic band, the corresponding mode comprising only a few
atoms as for cyano or benzene ring vibrations [7, 11]. In luminescence spectra [5,
12] only the dynamics of the chromophore is observable. Even in time resolved
optical Kerr effect experiments [3, 4], where a grating of the refractive index is
induced, one cannot observe the overall motion of the molecules; only conjugated
bonds contribute to the molecular polarizability anisotropy which are responsible
for this effect. Therefore here we shall talk about the motion of different molecular
fragments as well as about the motion of the molecule as a whole.

3.1. Basic definitions and properties

Oricntational autocorrelation functions of the form

CrulT) = Ppult, D E LWL, TH,s (1
where

Pyt 1) = (D5 [ANI DS + 1)y — {D5o[ AN mar{ D[Rt + T guots
ELm(ls t) = [<ID5;|0[~Q(1‘)]I2 - I(Dr’;to[g(')]>mo|‘2>mol
X <|D,';|0[Q(l + t)]lz - (D";IO[Q(‘ + t)]>m0l12>mol]”29

have been computed from the simulated molecular configurations. Dfo(£2(1)) are
Wigner rotation functions of a set of Euler angles determining the molecular
orientation at time ¢ in the principal axes frame of the order parameter tensor of the
simulated system. {---), and {--->.,, denote averaging over the time and the
molecules in the system, respectively. Subtraction of the average values enabled
comparison between different phases and different fragments. For example, for long
simulation runs in the isotropic phase Cyo(t) + 2C,,(1) + 2C,,(t) is equivalent to
{D%o(652(1))), where 60(¢) is the variation of the set of Euler angles due to molecular
rotation. Expression (1) has been taken in such a complicated form, which is normally
used for two-variable correlation functions [13] to climinate systematic errors due
to the long time fluctuations of the oricntational ordering to which the slowly
decaying correlation functions are very sensitive. When we study the re-orientation
of bonds, the reason for taking only the D%(£2(1)) functions with the first lower index
positive and the sccond index equal to zero is obvious: we account for the axial
symmetry of a vector connecting any two atoms and the axial symmetry of the
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simulated ensemble. For the whole molecule this set is certainly not complete. If the
intrinsic molecular coordinate system is identificd with that of the molecular moment
of inertia tensor, it becomes obvious that flexible PCHS5 molecules are far from
uniaxial symmetry, and hence the second index has to range from —L to L. In
general, the rank L of the two D functions constituting the time autocorrelation
function can also be different (scc Chapter 6 of [2]), but normally only those with
equal rank contribute to experimentally observable propertics. So, to save space, we
shall not present herc the less relevant autocorrelation functions; they are available
from the authors on request.

3.2. Dynamics of the simulated molecules

Orientational autocorrelation functions for different molecular bond vectors have
been derived for both phases from the simulation data, as shown in figure 1. The
infinite time value for all of these functions in the nematic phase is zero and does
not depend on the static orientational ordering of the various fragments. Nevertheless,
the orientational relaxation rate differs for different vectors, even those which are
more or less parallel to the long molecular axis, indicating molecular flexibility.
Differences are even observed within the rigid molecular core. The relaxation ratcs
increase for the more flexible fragments (a dynamic even--odd effect can be noted in
the alkyl chain). A similar feature is observed also for the short-time decay. The fact
that molecular flexibility contributes to the short-time decay of the orientational CFs
of molecular fragments is confirmed by figure 2 where their reorientational movement
is compared with that of the whole molecule.

The molecular flexibility can effect the reorientational CFs of the bonds in two
wiys:

(i) Intermolecular forces which reorient the whole molecule rclatively slowly can
lead to fast movements of molecular fragments and hence to the fast initial decay
of the corresponding CFs. The weaker the connection of the fragment with the
rigid core the stronger this initial decay (figure 1), its time-scale being consistent
with the time scale of the torques acting on the molecule (figure 3). The long
time decay of the CFs is quite similar for different molecule fixed vectors and is
caused by the reorientation of the molecule as a whole.

(ii) In different molecular conformations the bond can be substantially declined from
the molecular principal axis and rotation around other axes can contribute to
the relaxation of the corresponding CF. Even for the cyano bond this means that
not only tumbling but also the faster spinning motion can contribute to the
short-time, fast decay.

One way of checking this hypothesis would be to simulate a system of rigid
molecules in an all-trans conformation. The dynamical and most of all the static
properties of such a system will be very different. This can substantially change the
dynamical processes and mislead the comparison. Therefore we simulated a system
of rigid molecules by starting from one of the configurations of the isotropic
ensemble. The actual molecular conformations were frozen in by increasing the
intramolecular potential barriers to such an extent that any conformational changes
were suppressed during the whole simulation run. As a result, the static parameters
(like order parameters) were not changed (see table 1). From figure 4 it is seen that
the time of the reorientation of the molecule as a whole (the long-time slope of the
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Figure 1. Orientational autocorrelation functions for different bonds (marked by the numbers
of the atoms shown in 1) of the PCH5 molecule in the (@) isotropic and (b)
nematic phases.

1-19 CF) was not changed. Nevertheless, some changes of the librational movement
are clearly scen.

Comparing the behaviour of the CFs of the cyano bond for these two cases (sec
figurc 4) one can conclude that the influence of the intramolecular flexibility under
persistent intermolecular forces is substantial, but that it is not the only onc
contributing to the CFs decay. The difference between the cyano bond CFs in rigid
and non-rigid molecules is especially striking, bearing in mind the almost identical
behaviour of the torque CFs for these systems (figure 3(a, ¢)). Both the aforementioned
mechanisms affect the CFs for non-rigid molecules. The importance of the spinning
motion contribution is indicated by the fact that the rate of the short-time decay (up
to 0-5 ps) is almost identical for the cyano bond, and for the 3-4 C-C bond within
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Figurc 2. Orientational autocorrelation functions for different fragments (marked by the
numbers of the lateral atoms; 1-19, for example, corresponds to the whole molecule)
in the (a) isotropic and (b) nematic phases.

the benzene ring, whose relaxation is definitely strongly affected by the molecular
spinning motion (figures 2(b) and 4). That is true for both kinds of system.

It is difficult to describe precisely the contribution of the spinning motion. One
can consider the spinning motion of the whole molecule with the help of D functions
with m = 0 and a non-zero second lower index. But this refers to a coordinate system

Figure 3. Autocorrelation functions of the absolute value of the torque acting on the PCH5
molecule in the (a, ¢) isotropic and (b) nematic phases and its projections in cyclic basis
sets [25], of different symmetry. The I}, arc defined in a similar way to C,, by formula
(1) except that £ in this case means the orientation of the torque. I, corresponds to
the = projection while the other one can be related to the x and v components in the
Cartesian frame.
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Figure 4. Orientational autocorrelation functions for different fragments of rigid PCHS5
molecules in the isotropic phase. The CF for the cyano bond (1-2 in figure 2(a))
of the flexible molecules is also presented for comparison. The CF of the whole flexible
molecule (1-19 in figure 2{a)) is plotted as the dashed line.

which is fixed to the principal axes of the moment of inertia tensor, and therefore
will be subject to fluctuations in the molecular conformation. Hence both kinds of
motion are strongly coupled.

To treat the effect of intramolecular motions and molecular flexibility in more
detail, we calculated also orientational autocorrelation functions for different frag-
ments in an internal molecular frame (the frame of the benzene ring has been taken
for this as the most slowly reorienting in the external frame). Two regions are well
distinguished also in all internal CFs (for example for bond 16-17 in figure 5). The
long-time decay resembles diffusional motion with correlation times of the order of
hundreds of picoseconds, but the short-time decay looks more like that of librational
motion. When calculating the internal correlation functions, we assumed cylindrical
symmetry of the molecule, and hence the C,,, (1) with m # 0 corresponding to twisting
motions around the long axis of the fragment. It is evident from figure 5, that this
twisting motion (and probably also torsional motions within the molecular tail)
strongly randomize the molecular conformation within half a picosecond. This
certainly does not mean the absolute randomization of the orientation of the relevant
molecular fragment (see, for example, the CF in the external frame represented by
the solid line in figure 5). This process probably governs the short-time behaviour
of the orientational CFs in the cxternal frame,

Comparing the order parameters for different bonds in the molecular frame (table
2), one can conclude that the changes of the N-C-C angle contribute negligibly to
the declination of the cyano bond from the molecular long axis; the order parameter
of the cyano bond in this system is very high. Nevertheless, the movement of the
fragments placed in the opposite ends of the molecule or rather their conformations
are correlated. From table 3 it is seen that the value of the normalized cross-
correlation factor (the @, refer to the benzene ring fixed frame)

[Pro($2)) — {Dro(RDIDEH(R2) — (DL3(2:)>1>

= Lo @
9im = (DELRIP — KDEL2, DIIDEL R, — KDL @51 @
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Figure 5. Orientational autocorrelation functions of different symmetry for the 16-17
bond in the molecular fixed frame (dots) and in the external frame (solid curve). The
data were obtained for the isotropic ensemble.

characterizing the correlations between the deviations of different bonds from their
average orientation in the internal molecular frame, is sufficiently high.

To study quantitative differences in the short-time behaviour of the various
fragments it is convenient to expand the corresponding CFs defined by equation (1)
into a Taylor set around zero:

Cmi)=1- 61,..(0)12/2! + C(0) /4! + - - 3)

For isotropic liquids constituted of cylindrically symmetric molecules the second
derivative (the normalized second spectral density moment) is [17]

. .. L(L + HYiT
¢ = Cpof0) = = : WL @)

where ! is the moment of inertia for the short molecular axis, k is the Boltzmann
constant, and T is the temperature. By fitting the first two terms of this expansion
to the experimental curves, it is possible to estimate effective moments of inertia of
the rotating units. For an anisotropic phase the C..(0) depend on the order
parameters [14]). Using the results of [14] one can derive the formulae for the

Table 2. Order parameters {P,) for various molecular fragments in the benzene ring fixed
molecular frame for the nematic and isotropic phases.

Bond

System 1-2 14-15 16-17 18-19

Iso 0926 0-768 0-591 0-413
Neml 0923 0-817 0645 0-564
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Table 3. Factors g,,, for the correlation between 1-2 and other bonds within the PCHS
molecule obtained with formula (2) for the nematic phase, neml.

Bond 8-9 14-15 16-17 18-19
dro 0154 0091 0151 0167
™ 0210 0-168 0086 0054

Table 4. Second derivatives €,,,(0) of the orientational CFs of the moments of inertia tensor
for different simulated systems estimated directly from the CF2 (Sim) and from equations
(4) and (5) (Comp), using the molecular moments of inertia (‘Comp, fragment {-19" in
table 5). The values are represented in ps™ 2. The uncertainty of all the simulation results
is about 20%, and that for thc computed ones is 5%,. P, was taken as 0-315 and 0-29 for
nem! and nem2, respectively.

Iso Rigd Nemt Nem?2

Sim Comp Sim Comp Sim Comp Sim Comp

€10(0) 0-30 0-36 0-26 037 048 071 050 071
C11(0) 052 0-64 0-54 064
€32(0) 0-68 094 070 094

normalized CFs defined by equation (1) and obtain from equation (3):

42 + 30{Py) — T2{P> kT)
7 4 10{Py) + 18{P,> — 35¢P}) 1
42 + 15¢Py) + 48P kT

620(0) =

O =5 5P — 12(P | )
¢y = 27 0P = IR KT

T—IKP) +3P) 1 )

Fits to the simulated CFs have been done between zero and 0-05 ps, and the resulting
second derivatives are summarized in table 4. The values of the moments of inertia
estimated with equations (4) and (5) for different phases and different systems are
presented in table 5. As is clear from definition (1), this corresponds to an average
of two maximal eigenvalues of the moment of inertia tensor, Such values, estimated
directly from molecular configurations are also presented in table 5.

It should be noted that for all of the systems studied the second derivative of the
autocorrelation functions of the whole molecule are systematically smaller than
cstimated from the relevant moments of inertia. This indicates the strong effect of
the molecular interactions (which were neglected in the estimates) in agreement
with the very short correlation time for the molecular torque which is observed in
figure 3. Even within this very short time interval of 0-05 ps it is not possible to
observe totally free rotation, The cflect of the molecular interaction depends strongly
on the kind of CF, being maximal for C,(0). Therefore the averaged C,,.(0) values
were taken for the moments of inertia estimates in table 5 (sim). Comparison of the
data in different rows of table 5 gives a quantitative illustration of the effect of
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Table 5. Moments of inertia of various molecular fragments calculated directly from
molecular configurations (Comp); averaged values obtained from ,.(0) with equations
(4) and (5) (Sim); from Raman mvcsngauons of the cyano stretching mode [7] (Exp).
The f values are in 1074 kg m2,

Iso Rigd Neml Nem2
Fragment Sim Comp Sim Comp Sim Comp Sim Comp
-19 1010 842 1160 814 1060 849 1030 848
1-8 49 58 43 60 59 61 62 61
1-2 11 19 11 19 11 19 9-8 1-9
1-2 Exp 13+2 2749

flexibility and/or spinning motion on the short-time decay of molecular fragment
reorientation.

Concluding the treatment of the short-time reorientational motion of the
simulated flexible molecules, one can deduce the following picture: on the one hand,
being subjected to strongly fluctuating intermolecular forces, the conformation of the
molecules exhibits relaxation in a time scale which is much shorter than that expected
from the corresponding molecular moments of inertia; on the other hand, this
conformational flexibility couples the contributions of molecular rotations around
different axes to the orientational relaxation of a molecular fragment.

3.3. Comparison with experiment

From a band shape analysis of Raman spectra the orientational autocorrelation
function for the cyano bond of isotropic PCHS5 has been derived (see figure 6), and
this can be compared with the simulated ones. The initial non-exponential decay is
observed well in the experimental and the simulated curves for different fragments
in both phases (see also figure 1).

1.00
Cao(L) |1
0.95 - I l
If' i
i
”M.
085t 1 gL
0.0 1.0 . /2.0ps 3.0

Figure 6. Experimental CF for the cyano fragment reorientation, obtained from Raman
band-shape analysis in the isotropic phase at 333 K.
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Evidence that only the rotation of some molecular fragment is observed in Raman
experiments can be obtained from a comparison of the moments of inertia derived
from experimental autocorrelation functions, by using equations (4) and (5), with
average values calculated for the short molecular axes from the simulated configura-
tions (table 5). Certainly the cxperimental values are influenced by the molecular
interactions, but this can only increase the apparent values. In spite of this,
experimental values arc comparable only with the moments of inertia of small
molecular fragments.

Thus. experimental data have shown that the short-time non-exponential relaxa-
tion is not an artefact of the simulation procedure, but represents a phenomenon
which has to be taken into account in appropriate models.

3.4. Memory functions formalism

Criteria for choosing an appropriate model to describe the rotation of meso-
morphic molecules can be derived from a formal analysis based on the memory-
functions approach [15]. So we must choose which angular variable we can treat as
Markovian, i.c., the [requency dependence of which can be neglected. The short-time
evolution of the orientational CFs, which is most interesting here, occurs within the
time scale of the molecular interaction relaxation (comparison of figures 3 and 1),
preventing a time-scale separation at this level. Thus we can conclude that in order
to be able to describe the features of interest, the model should not neglect the time
evolution of the torque from intermolecular forces. Consequently, we can be sure
that small-step [16] or extended [17] diffusion models cannot provide a compre-
hensive description. Proper theorics, like cage models [18], must treat angular
momentum and torque as dynamical quantities, and only the derivative of the torque
(or higher order derivatives) can be treated as Markovian. Nevertheless, at first we
shall distract our attention from the particular shape of the CFs, and analyse only
the long-time diffusive behaviour; the more appropriate cage models will be treated
after this.

3.5. The diffusion model

Most of the work on the re-orientational dynamics of molecules in liquid crystals
is devoted to the long-time behaviour. Orientational relaxation is treated as a
diffusion in an external potential, usually of mean-field type, while the results do not
depend on the particular form of the mean-field potential. Thus, in [19] and [20]
orientational correlation times for D functions of different symmetry were derived,
using the small-step diffusion model for molecular orientational relaxation in the
mean-field nematic orienting potential:

o T+ 10CP) + 18CRY — 35¢P;) \
07 6D(T+ 5P — 1XPY)
T4 5P = IXPY
T 6D(T + 25¢P,> + 8{P)
o = 7—10¢P) +3CPy

6D,(7 — 5{Py> — 2{P)) J

(6)

T2y
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Table 6. Orientational correlation times for two nematic systems (with different partial
charges) from an exponential fit C(t) = Aexp(—t/t) to the long-time tail of the
simulated CFs (fragment 1-19). Results from a small-step diffusion theory [20] are also
given. The valucs in parentheses arc the corresponding As. The accuracy was estimated
1o be 10°;, for the 7 vatucs and 2% for the A values.

Neml Neml Theory Theory
Parameter (Cyano) (Whole) Eq. (6) Nem2 Eq. (6)
T30(ps) 1750 (0-85) 1900 (0-974) 2400 620 (0-970) 760
T3y (PS) 950 (0-76) 2100 (0-972) 1600 800 (0:976) 490
132 (PS) 1050 (0:765) 1500 (0961) 1500 570 (0-960) 460
Ta0/T2y 1-84 0-90 1-54 078 1-54
T30/Taa 1-67 127 1-64 1-09 1:64
T27/Taa 090 1-40 1-07 1-40 107

where D, is the diffusion coefficient for molecular tumbling, which has been derived
from the simulations in [10]. The results of the calculation for the relaxation times
and their ratios arc presented in table 6.

As it is seen from figure 2, in the long-time limit the correlation functions of both
the whole molecule and its fragments can be well approximated by a single
exponential. This is illustrated by the multi-exponential least-squares fit of one of
the simulated CFs for Nem1 in the time interval 0-100 ps:

Caot) = 09735 ¢ 791900 4 0:014 ¢ ™7+ + 00125 ¢ 7%, (7

For the system with smaller partial charges the short-time exponents have even
smaller relaxation times.

We have performed single-exponential fits for two nematics with different partial
charges in the time interval 10-100 ps (the lower limit was taken relatively high to
ensure the applicability of the onc-exponent approximation). The oricntational
relaxation times were strongly dependent on the partial charges: the bigger the
charges the longer the duration of the relaxation. But the ratios are not so differcnt
for the simulated ensembles (although the difference is somewhat larger than the
computational uncertainty).

Comparing the simulated data with the theorectical predictions one can conclude
that the absolute values of the relaxation times are well predicted by the Kirov e
al. [20] expressions, but they fail to predict correct ratios of the correlation times.
One of the severe approximations used in [20] is the one-exponent approximation,
But as it is shown in [21] (see also Chapter 3 in [2]) this does not lead to substantial
changes. Probably, the residual differences can be attributed 10 the effect of molccular
flexibility, which can strongly affect C,,(t) and C;,(!).

3.6. Cage parameters

Before testing the cage models it is useful to investigate the parameters of the
cage, and the extent to which the interactions of a molecule with its surroundings
can be described by the cage effect. Simulated configurations can be used as a source
of direct information on the cage dynamics, like in the recent work by Moro et al.
[22] on Lennard-Jones liquids. So, for a given configuration we considered the
interaction energy of a chosen molecule i with the rest of the simulation box (with
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Figure 7. Examples of the dependence of the cage potential on the orientation for some
arbitrarily chosen molecules of simulated PCHS5 in the isotropic phase (asterisks).
The curves are the least-squares parabolic fits of the computed results. The dashed curves
correspond to the re-orientation in the plane of the benzene ring. and the solid curves
to re-orientations perpendicular to it.

cut-off limits similar to those used during the simulation run)

URy, 2,,...,R. Q... Ry, 2y) = Z u(R,;, £y, ij -Qj)- (8)
J#i
By changing the orientation of the reference molecule i (the rest being fixed) we
obtain a potential surface for the molecule under consideration:

U(R) = UR,, 2,,....RL.2,..., Ry, Qy). 9)

Examples of such potentials for some molecules in the isotropic phase of the system
considered can be scen in figure 7. Only small deviations from the actual molecular
positions have been considered because of the steepness of the potential in most cases,
confirming the idca of the cage. In an internal molecular frame we distinguished
between the reoricntations in different plancs: in the planc of the benzene ring (y:z
planc, or angle f in figure 7) and perpendicular to it (xz plane, or angle « in figure 7).
The variations in the well shape and its deviations from the harmonic potential
can be obscrved in this figure. Nevertheless, as was noted in [22], one can
approximate the well by a harmonic function (due to the small deviations of the
instant orientations from their minimum position for most molecules):

Up) = Kp*2, (10)

autributing anharmonic terms to fast fluctuating intermolecular forces. Here, f8 can
be any of the angles describing the molecular orientation in the well, either in the
intrinsic molecular system or in the coordinate system of the director (see figurc 8).
The fluctuations in the curvature could be treated similarly if the fluctuations are
not too high. To test this, the potentials were approximated by a parabola in the
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Table 7. Parameters of the molecular motion within the cage and the cage parameters for
the isotropic and nematic phases of PCHS; for explanations see the text (kcal = 4-1868 kJ).

Iso Nem!
Average potential curvature K (kcal mol ™! rad " 2) 857 590
Curvature relaxation time (ps) 015 0-06
Mean-square displacement of the molecules within
the cage (mrad) 74 66
Average libration period estimate (ps) 0-48 0-64

vicinity of the bottom, yielding distribution functions for the curvature in different
planes. As can be seen from figure 8 for both planes of re-orientation the distribution
functions are almost identical and very broad. The high probability of very low
curvature indicates that presumably due to the complicated shape of mesogen
molecules their packing is far from being dense. Moreover, the width of the
distribution shows that the fluctuations cannot be treated as being small. It seems
that larger reorientation jumps of the mesogen molecules proceed during fluctuations
of the barrier between adjacent wells to low values (a very small amount of states
with negative curvaturc corresponds to molecules which are near the saddie
point). The summary of the main properties of the cage potential both for nematic
and isotropic states is presented in table 7.

After determining the position of the minimum of the well in the aforementioned
coordinate systems, the position of each molecule relative to this minimum has been
determined. Looking at the instant positions of the molecules in the well (figure 9(c))
it is difficult to see any anisotropy in the projection to the xy planc. For the nematic
phase even the distribution functions describing the orientation in the xz and yz
planes displayed in figure 9(b) are similar, so we neglected any deviations.

In the nematic phase it is natural to study the cage parameters in the coordinate
system fixed to the director frame. The f and x in the distributions of figures 8(b)
and 9(b) correspond to polar (z = const and f§ variable), and azimuthal (f# = const
and x variable) angles. The similarity between the cage curvature (figure 8(b)) and
cage orientation (figure 9(b)) distributions in different planes in the nematic phase
can be used as a simplifying factor in cage theories of the mesophase. It should be
noted that an increase of the orientational ordering in the mesophase results in a
better defined cage shape: the orientational distribution function of the molecules
within the cage becomes narrower and the mean-square deviation of the molecular
oricntation in the cage is smaller (table 7). This increase in the order leads to a
decrease in the average cage curvature (table 7) due to the substantially smaller
amounts of molccules placed very far from the bottom of the well, where the
interactions are much higher than predicted by a simplc parabola. Nevertheless, even
in the nematic phase the cage is far from ideal: the fraction of cages with a curvature
close 1o zero is very large. The origin of these contributions can be scen from figure
8(c), where the mean cage curvature is displayed as a function of the position of the
potential minimum relative to the dircctor. The cages directed perpendicular to the
dircctor (P, = —0-5) have the smallest curvature. Such a strong dependence is not
obvious, and commonly (see, e.g., [23]) the short range (isotropic) potential is
supposed to have a much higher curvature than the mean field one. From these
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studies we can conclude that the macroscopic anisotropy of the mesophasc manifests
itself in modilying the parameters of the short range potential.

To study the dynamical properties of the cage and the molecule in it we separated
the re-orientational movement of the cage from changes in its shape. The visualization
of the time evolution of a particular molecule’s oricntation and its cage (figure 10)
suggests that while the molecular oricntation is evolving in a continuous way the
cage motion, being dependent on the spatial variables of a large number of molecules.
is much more crratic. Under these circumstances pronounced molecular librational
motions within the well cannot be observed. In fact an average molecular libration

period
1:2
T='(f) . (n
2r\ K

as calculated with average values for I and K taken from tables 5 and 7, would last
much longer than the time nccessary for a change in the curvature of the cage
(compare figure 11 and table 7). This does not mean that the cage disappears; its
curvature becomes non-zero, but completely non-corrclated with its initial value.
Duc to this dynamic averaging we can summarize that at least in the isotropic case
the molecules are placed in similar rapidly fluctuating cages. Unfortunately, due to
very fast changes in the shape of the cage we cannot distinguish whether the
re-orientation of the molecule occurs due to the transition to another cage, or whether
the same cage is reorienting.

3.7. The cage model

Some cage models of the rotational motion of non-spherically symmetric
molecules have been developed [or isotropic liquids [ 18, 24]. According to them the
moleculc has scveral stable orientations, i.c.. potential minima of the orientational
energy. The height of the barriers scparating the minima must be larger than k7 to
ensure the oscillatory movement of the molecule. The molecule is subject to a random
force from the surroundings and hence its libration is damped. When the energy
fluctuations rcach the height of the potential barrier, the molecule leaks out of the
well into a ncighbouring one. For a two-dimensional potential of this kind the
equations for rotational motion have been solved [ 18]. resulting in the orientational
autocorrelation function

Punlt) = Lexp [inH0) — im(D)])

=cexp(—2:1)0,.| ex _’1"211_,‘ ) | - ex _#T;;Z
= CXP L S50 0mn| CXP K ! 1 p K

2nn
1 - 21 ¢os . 12
x { cxp[ 1 cos N ]}) (12)

Figure 8. Distribution functions of the cage curvatures defined by equation (19) in different
planes for the (a) isotropic and (h) nematic phases. In part (¢) the dashed line
corresponds to the re-orientation in the plane of the benzene ring, and the solid linc to
re-oricniation perpendicular o it. In part (b) the solid and dashed lines correspond to
polar ff and azimuthal x angles, respectively, in the director fixed frame. In part (¢) the
mean cage curvature is displiyed as a function of the position of the potential minimum
relative to the director.
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where
nt N .
ty=exp| —— )| cos 2t + - — sin 2t 13
w0 ~Pf s 1 inal] "
and
K 1 1/2
R=("—--») . 14
(- 1) "

K is the force coeflicient as defined by equation (10); N is the number of wells within
2z. The rate y of escaping the well can be related to these parameters and to the
damping factor n. It is worth noting that p,,(t), for example, is a linear function of
C,0(1), defined by equation (1). (Explicit expressions for the Wigner D functions can
be found in [25].)

In the itinerant oscillator model [26] a non-spherical molecule librates inside a
cage of neighbouring molecules. The cage in its turn performs rotational Brownian
motion. Analytical solutions for discs in two dimensions have the form of equation
(12) which we shall discuss.

This equation combines resonance and diffusional phenomena as can be seen by
putting ¢ « ¢, or ¢ » 5. Extrapolation of its long-time part to ¢ = 0 intersects the y
axis at In (p,(1)) = — (kTn*/K) below zero, similar to experimental and simulated
curves. From the previous considerations most of the model parameters (I, K) are
already defined. The number of wells can be taken rather arbitrarily: this is strongly
coupled in the model to 7 and determines only the long-time relaxation. From the
width of the distribution function in figure 9 one might accept 16 to be a reasonable
estimate. This value ensures also sufficient deepness of the wells. ¥ has been derived
from the long-time slope of the autocorrelational functions., The value of the last
arbitrary parameter 5 was varied to minimize the oscillatory behaviour. The resulting
model autocorrelation curve is compared to the experimental one in figure 12(a),
curve 1: the list of the parameters values is summarized in table 8.

It is seen that the average value of the cage potential curvature derived from the
simulations is not able to describe the initial decay of the orientational relaxation
(this decay is totally determined by kTn?/K in equation (12)). Inertial effects cannot
make the initial decay more substantial; a smaller i only increases the amplitude of
librations and smaller moments of incrtia / make the short-time relaxation faster,
but not deeper. Here, we see again a manifestation of the non-uniformity of the cage
potential curvature, i.e., the contribution of the cages with nearly zero curvature. As
can be scen from figure 12(a), only with much smaller value of K (curve 2, and
table 8) it is possible to achieve the required magnitude of the short-time decay. For a
correct description of the time evolution of the reorientational CFs in the whole time
interval, one has to account for the distribution of the cage curvatures.

From figure 12(b) it is seen that the cage model can predict, in principle, the
cvolution of the CFs for molecular fragments. The curvature K in this case can be
chosen arbitrarily and can lose any physical meaning, while the moments of inertia
can be taken as estimated from the atomic spatial structure of the separate molecular
fragments (compare tables 5 and 8).

Figure 9. Distribution functions of the molecular orientation in the cage for (a) isotropic
and (b) nematic phases in different planes. Part (¢) is a scatter plot illustrating
the instant orientations of molecules in the cage. The correspondence of the different
curves is similar to that in figure 8.
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Figure 10. Time dependence of the oricntation of a particular molecule (solid line) and the
orientation of its potential well (dashed line) in the nematic phase. The orientation is
described by the azimuthal angle in the director frame. The lower curve is the plot of
its potential curvature time dependence. The time step of the plot is 0-2 ps.
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Figure 1.  Autocorrclation function of the curvature of the cage for the nematic phase PCHS,

Table 8. Model parameters used in equations (12-14) 1o fit the simulated CFs in figure 12,
For an explanation of the parumeter values sce the text.

v/ns ! 1107 % kg m? (kT/K)1073 n/ps ™!
Curve | 05 842 0767 6
Curve 2 05 842 4-83 6

Curve 3 263 19 304 56
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Figure 12. The re-orientational autocorrelation functions of (a) the whole molecule and (b)
the cyano bond in the isotropic phase, obtained from simulations (solid curves)
and from the cage model (dashed curves) with equations (12-14). The fitted parameters
are given in 1able 8.

4. Conclusion

In this computer simulation study of tumbling molecular motion in mesomorphic
systems we usced the typical mesogen PCHS, bearing in mind the possibility of
extending our conclusions to other nematic compounds. It became evident that the
conformational molecular flexibility plays an important role, not only in the
oricntational statistics of the molecules in the mesophase, but also in their dynamics.
We analysed orientational autocorrelation functions of different molecular fragments
in both frames of the nematic director and in an internal molecular frame within the
time interval 1-100 ps. From these studies we can conclude that molecular orientational
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motion can bc described well by the diffusion model only at sufficiently long time
intervals (not less than [ ps). To observe single exponential orientational diffusion
cven larger time intervals (more than 10 ps) must be treated. The short-time
oricntational movement is driven by other mechanisms: on the one hand, being
subjected to strongly fluctuating intecrmolccular forces, the conformation of the
molecules exhibits relaxation in the same time-scale, which is much shorter than that
estimated from corresponding molecular moments of inertia. This results in a very
fast short-time relaxation of the re-orientational CFs. On the other hand, this
conformational flexibility couples molccular rotations around different axcs, causing
the spinning and twisting molecular motions to contribute to the tumbling molecular
motion. This can be probed by studying the properties of single fragments.

In spite of this rather complicated picture one can use relatively simple cage
maodels to fit the re-orientational autocorrelation functions. This can even be done to
fit CFs of different fragments, but the interpretation of the model parameters in this
case can be rather speculative. Conversely, to model the re-orientation of the whole
molecule one can use well-determined molecular parameters. For a more precise fit
of the experimental functions one has to account for the distribution function of the
cage potential curvature. Fast variations in the curvature strongly distort the
short-time evolution of the CFs, making it impossible (and probably not necessary)
to distinguish between different cage models (multiple cages or one diffusing cage).

Financial support of the Deutsche Forschungsgemeinschaft and NATO Science
Committee, which enabled us to perform the computer simulations and collaborative
work, is gratefully acknowledged. The authors are grateful to A. Ferrarini for fruitful
discussions.
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