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Structural inhomogeneities and their effect on the dynamics are investigated
for a molecular dynamics model of quenched amorphous silicon. The structure
of the model is analysed with the help of the Voronoi-Delaunay approach,
which is a convenient tool for this purpose. The silicon structure is found to be
rather homogeneous. Only localized defects are found, and no medium-range
regions of ‘imperfect’ structure as were observed in a Lennard-Jones glass by
V. A. Luchnikov, N. N. Medvedev, Yu.l. Naberukhin and V. N. Novikov
(1995, Phys. Rev. B, 51, 15 569). It is assumed that the inhomogeneity in glasses
is the result of competition between the tendency of atoms to pack locally into
the most favourable arrangements and the necessity to realize space filling
structures. For spherical atoms a regular tetrahedron of four atoms is the
densest local configuration; however, such units cannot cover the whole space.
As a result, Lennard-Jones glasses have regions of structural inhomogeneity
with an extension of 3-5 interatomic distances. Amorphous silicon is not
governed by close packing: its structure is a tetrahedral bond network. The
aforementioned conflict is not relevant here, because the disordered tetrahedral
network can fill the space with minor distortions of bond lengths and tetrahedral
angles.

1. Introduction

New concepts for the description of the structure of non-crystalline states have
been developed during the past few years. Traditionally, amorphous phases are
considered as homogeneous systems with some average local or ‘short-range’ order,
preferentially described by pair distribution functions. But this approach does not
appear to be well suited to the explanation of various experimental facts. The
anomalously high heat capacity [1, 2] at low temperatures, as well as the excess density
of vibrational states in comparison with the Debye distribution (‘boson’ peak),
observed in glasses by low-frequency Raman scattering [3, 4], far-infrared absorption
[5], and inelastic neutron scattering [6] indicate the existence of mesoscopic
inhomogeneities, caused by regions of tens or hundreds of molecules [7-11]. Thus, the
idea of structural inhomogeneities of nanometric size and the problem of ‘medium-
range order’ has become relevant (12, 13]. On the other hand, computer simulation
techniques can be employed successfully to study directly the structure of amorphous
phases. This means that we are restricted no longer to simplified structural models of
the amorphous state. Molecular dynamics or Monte Carlo simulations give us the
coordinates of all atoms of a system. All of the information on the mutual arrangement
of atoms can be extracted from these data. Although the route from the set of atomic

0026-8976/96 $12-00 © 1996 Taylor & Francis L\d



1338 V. A. Luchnikov et al.

coordinates to suitable structural properties has its own difficulties, the development
of methods for solving this problem is progressing rapidly [14-19)].

It has been assumed in our recent papers [20, 21) that the universality of some
characteristics observed in glasses may be related to the common geometric nature,
The inhomogeneities result from competition between the tendency of atoms to pack
locally into the most favourable arrangements and the necessity for realizing a space
filling structure. The nature of this conflict is quite understandable for spherical atoms.
Indeed, the regular tetrahedral arrangement of four atoms is locally the most dense
and energetically favourable, but it is known that these arrangements fail to be space
filling. Therefore, in close-packed crystalline structures tetrahedral holes alternate
with octahedral. Dense liquids contain a fraction of local arrangements that are similar
to the regular tetrahedral ones [22-25]. Being energetically most favourable, these are
less subject to restructuring during fast freezing. As a result, a non-crystalline phase
arises because the initial arrangement of tetrahedral units in liquids has no
translational symmetry. Besides, these units usually form aggregates that are not
impossible for crystals (branching clusters and five-membered rings) [14, 22, 26).

According to a detailed study of the structural inhomogeneities in vitreous
Lennard-Jones systems, one can distinguish easily regions of * perfect’ and ‘imperfect’
structure [20]. The environment of atoms situated in regions with perfect structure can
be described by local structural elements (Delaunay simplices) with shapes similar to
the shapes formed by regular tetrahedra or quartoctahedra, i.e., similar to the shapes
of perfect local structures in crystals. However, the mutual arrangement of these
perfect structural elements is different from the infinite repetition in crystals, and
limited to associates on the scales of 3-5 interatomic distances. Between these regions
the arrangement of atoms is imperfect: the shape of local arrangements differs from
the given perfect shapes.

Ofinterest is the fact that these regions are not only geometric characteristics of the
system but also display distinct physical properties. In a recent paper [21], the separate
velocity autocorrelation functions were determined and used to calculate the
corresponding vibrational densities of states. It turns out that low-frequency
vibrations are more characteristic for the regions with the imperfect structure. This
confirms the concept that nanometric scale structural inhomogeneities give rise to the
excess of low-frequency modes, compared with crystals,

Particles with more complex interaction potentials will have other preferred local
arrangements. One can imagine that the more difficult it is to fill space by a given
structural element, the easier it is for the system to have a structural inhomogeneity
and to turn into a glass. On the other hand, if the local arrangements can fill the space
without conflicts, such systems may be more homogeneous, and the structure should
transfer to the crystalline state more easily. Silicon provides an example of such a
system. The optimal local arrangement of silicon atoms is four neighbours tetra-
hedrally surrounding a central atom. This configuration is an element of crystalline
structures, particularly of the diamond lattice into which silicon crystallizes. Indeed, it
is not possible to vitrify liquid silicon by melt quenching: amorphous Si is obtained by
precipitation from vapour. Non-crystalline silicon exists as a disordered tetrahedral
network, filling the space with minor distortions of bond lengths and tetrahedral
angles [27, 28]. This tetrahedral network of Si—Si bonds is a generally accepted model
of amorphous silicon. It is known, however, that amorphous Si usually has defects,
observed particularly in the deviation of the average number of nearest neighbours of
atoms from four.
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In this paper we try to study the structure of amorphous silicon on an intermediate
scale to find structural inhomogeneities and their dynamic peculiarities. However, we
do not rely on the concept of a network of Si—Si bonds, the construction of which for
molecular dynamics models always bears some arbitrariness, but have used a purely
geometric approach.

2. Model

A model of amorphous silicon, containing 1000 atoms in a cube with periodic
boundary conditions, has been produced for structural analysis by molecular
dynamics. The equilibrium conditions correspond to 7 =300 K and density p =
2-:294 g cm™. The interatomic potential allowing for both pair and three-particle
interactions has been taken as proposed by Stillinger and Weber [29]:

V="V+V, N
1
Vi) = ABrit = Dexp ) @
ry—a
Valripo ton 1) = W rpr )+ i ro ) + i, rer), 3
Y 7 ;
h(r,, rp r.)=4exp (rl_—a + P a) (cos {)Ul‘ +3). «)

The following values have been used: 4 = 0-70495; B = 0:60222; a=1-80; 1 =
21:0; y = 1-20. Energy is given in units of ¢ = 3-4723 x 107'* J; distance r is in units of
o = 20951 A. This effective potential certainly is not designed to reproduce the direct
interaction of two atoms, but reproduces the prevalent local structure in condensed
matter by the fact that three atoms forming a tetrahedral angle have a minimal
potential energy. The equations of motion have been integrated in terms of the
algorithm given in [30] with a time step of 0-4 fs. The molecular dynamics program uses
a temperature and pressure scaling procedure [31] to attain preset values. This allows
us to perform a gradual relaxation of the system to a given thermodynamic state.

To prepare the amorphous state of silicon, we start from the liquid state at a
temperature of 1700 K and zero pressure, yielding the density p = 2-46 gcm™ [32).
This state had been equilibrated for 40 ps. The process of vitrification and further
simulation of the equilibrium amorphous state involved a modification of the
expression for the three-particle interaction A(r,r,,r,) proposed by Dodson [33],
according to which the cosine in expression (4) is substituted by (cos 8, +1)*+5(cos
0, +3). Dodson studied the homoepitaxial growth of an Si crystal on the (111)
surface using the Monte Carlo method and found that the original Stillinger—Weber
potential is inadequate for describing this process. In our calculations we used the
value # = 0-3. In test runs we had also used the original potential, but in this case
a much slower cooling rate is necessary to avoid an exceedingly large fraction of
atoms with five neighbours, in accord with experimental pair distributions functions
[34-37].

Starting with the configuration of the liquid, the sample was quenched to 300 K
within a time period of 1,,.,.., = 100 ps. During this cooling process the temperature
was varied with time according to T = 1700—1400(¢/1,,...)* K, keeping zero
pressure. The state obtained is considered to be amorphous silicon (see following). The
subsequent molecular dynamics evolution of the sample has been performed at
constant temperature and pressure.

‘Vibrationally averaged® configurations (V structure) of amorphous Si were
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Figure 1. The pair correlation functions for vibrationally averaged (solid curve) and

instantaneous (dashed curve) configurations of amorphous Si.

constructed to demonstrate the structural motives in the sample. To this end, the
coordinates of each atom were averaged over 50 successive configurations of the
original molecular dynamics run. This interval has been chosen as the optimal one for
reaching the maximum narrowing of the first peak of g(r) (see figure 1).

3. Local structure

The first maximum of g(r) is separated from the second by a deep minimum at
r, = 1:3g (figure 1). This allows the first coordination shell of the atoms to be defined
clearly. The corresponding coordination number is 4-04. The minor excess over four is
due to the fact that about 6:1 % of the atoms have five neighbours. Simultaneously,
2:2% of the atoms have less than four. Independent of the number of particles in the
first coordination sphere, the angles between the four nearest neighbours were
measured for each atom. The mean value of the angle is & = 109-5°, with a mean-
square deviation = 10-4°. These values are very close to those obtained by Polk [27]
for the disordered tetrahedral network model.

Thus, in terms of conventional criteria, our model of amorphous silicon can be
considered as a well defined tetrahedral network. However, in this network there are
a few topological defects. If the Si—Si bonds are defined as existing between the
central atom and its neighbours in the first coordination shell, there are some atoms
with extra and some with missing bonds. If we take exactly four bonds per atom, being
formed with the four nearest atoms, we get a small percentage of ‘one-sided’ bonds.
This arises when a first atom is connected with a second, but the second atom does not
include the first one in its four nearest neighbours.

The degree of tetrahedricity of the nearest environment of the silicon atoms can
also be estimated using the measure T (tetrahedricity) determined from the formula

[38]):
Z (11_ ;)2
=t
T 1572 O
where /, is the length of the ith tetrahedron edge (the distance between vertices), and
! is the mean edge length of the given tetrahedron. For a perfect tetrahedral
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Figure 2. Frequency distribution of perfectness T (tetrahedricity) of the nearest environment
for the atoms of amorphous Si in vibrationally averaged (solid curve) and instantaneous
(dashed curve) structures of amorphous Si.

configuration the value of the measure T evidently is equal to zero. For minor
distortions of the shape the values of the measure are also small. The larger the shift
of the atoms from a regular tetrahedron, the larger is the measure. The tetrahedricity
was proposed for studying the shapes of the Delaunay simplices in dense non-
crystalline packings. In this case, however, we determine the tetrahedra of the four
nearest neighbours of the silicon atoms. Figure 2 demonstrates the distribution of T
for our amorphous Si model. It is seen that the local order of the majority of atoms is
close to the regular tetrahedron. The mean value of T is 0-0125 with a mean-square
deviation of 0-0107. For the atoms having exactly four neighbours in the first
coordination sphere the mean value of T is 0-0106. For the 8-3 % of atoms remaining
the mean T is 0-0331 which is twice as much as the ‘boundary’ value 1, = 0-018 used
in the previous papers for ‘good” tetrahedra [15]). Note that the distribution of the
measure T is almost the same for the V structure as for the instantaneous
configurations (I structures). This means that the existing variety of structural
distortions in amorphous silicon is of an intrinsic structural nature rather than a result
of thermal fluctuations.

We have calculated also the Voronoi polyhedra for all atoms of our system. The
mean-square deviation of its volume is 0-112¢3, which is only 5-1 % of the mean value
V = 2-212¢". This points to the absence of noticeable density fluctuations in our
model. Note that a weak anticorrelation can be observed between the tetrahedricity
and the volume of the Voronoi polyhedra. The better the tetrahedricity of a local
environment, the larger the volume that is assigned to the given atom. The same
anticorrelation between the mean density and the tetrahedral order in the system has
been observed when analysing water models [39]. This is attributed to the nature of a
regular tetrahedron with four atoms surrounding the central one.

4. Structural motives of the Delaunay network

The regularities of a medium-range structure can be described conveniently with
the help of a geometric Voronoi-Delaunay approach [14, 15]. It does not need any
physical bonds between atoms and therefore is free of the problems connected with
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Figure 3. Clusters of atoms with () more regular and (b) more disordered structural
surroundings. 20% of all atoms are shown in cach.

their definition and determination. This approach employs two geometric networks:
Voronoi and Dalaunay. One can choose between them according to the concrete
problem. The Delaunay network seems quite suitable for the present case.

The Delaunay network can be obtained by constructing the Voronoi polyhedra
around each atom of the system. The sites of the Delaunay network coincide with the
atomic centres, and the edges (the bonds of the network) connect  geometric neighbour
sites’ (which share a common face of their Voronoi polyhedra). Note that according
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to this definition in our model every atom has, on average, 18-5 geometric neighbours,
They include first, second, and in part, third neighbours of the network of ‘physical’
Si—Si bonds.

In order to detect the mutual arrangement of atoms with the most regular
tetrahedral local order one should label (colour) those atoms (sites on the Delaunay
network) which have the smallest values of the measure 7. Similarly, in order to find
aggregates of atoms with a strongly distorted environment one should colour only the
sites which correspond to the largest values of T. For a pictorial illustration of such
aggregates we have taken one V structure configuration of our model. Figure 3(a)
shows the 20 % of atoms with the best tetrahedricity, and figure 3 () the same number
with the worst one. In the first case the value of T for any atom is less then 0-005, and
greater than 0-018 in the second case. The lines depicted are the bonds of the Delaunay
network connecting ‘ coloured’ geometric neighbours (not only * covalently bonded’ Si
atoms), therefore three-membered rings can be recorded in the figures. Note that the
aggregates obtained are not at all compact regions. This distinguishes amorphous
silicon from argon in which a separation between aggregates of atoms with different
degrees of * perfection of the nearest environment ' has been quite obvious ({21}, figures
1 and 2). In silicon these aggregates are likely to have a more random nature. For
comparison, figure 4 shows clusters on the silicon Delaunay network obtained by a
random colouring of 20 % of the sites.

To estimate quantitatively the correlation between the chosen atoms, a correlation
coefficient for the neighbours on the Delaunay network has been introduced. For the
first neighbours on the Delaunay network it is

T2
k=202 ®)
T2

where T; and 7 are the values of the measure T for the ith and jth atom, which are
geometric neighbours. It appeared that for our silicon model this coefficient of
correlation is rather small: k&, = 0-12. For comparison, the same correlation coefficient
for the * perfection’ of the local structure in amorphous argon [21] was determined to
be much larger: k, = 0-37. Similarly, the correlation coefficient k, can be introduced
for the second neighbours on the Delaunay network. In amorphous silicon this turned
out to be almost zero, and in argon k, = 0:109. With an independent random
colouring of the sites the values of k, and k, are in the range 30-008. This scattering
can be considered as a measure of the accuracy of the correlation coefficients.

Similar investigations have been performed for the volumes of the Voronoi
polyhedra which give a measure of the local density. Figure 5(a) labels the 20% of
atoms with the smallest volumes of the Voronoi polyhedra and figure 5(b) shows those
with the largest. The correlation coefficients of the volumes of the Voronoi polyhedra
are somewhat higher than for the measure T: k, = 0-16 and k, = 0-005. However, this
is attributed partially to a trivial geometric fact, namely, that atoms participating in
dense (or loose) local aggregates are geometric neighbours automatically. Note that
the density of the clusters is similar because, as mentioned earlier, the width of the
polyhedra volume distribution is rather narrow.

5. Partial velocity autocorrelation functions and the density of vibrational states

It has been demonstrated [21] that in amorphous argon the dynamic behaviour of
the atoms in the regions of perfect structure differs from that of the atoms in the
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Figure 4. Clusters of randomly chosen atoms on the silicon Delaunay network. 20% of all
atoms are shown.

regions of imperfect structure. This was obtained from an analysis of the partial
velocity autocorrelation functions. These functions are calculated as

K(z) = Cw()v(t +1)), @

where the averaging is performed over time and the given types of atom.

Figure 6 (dashed curves) shows the partial velocity autocorrelation functions for
the 20% of atoms with the best and, accordingly, the worst tetrahedricity of the
nearest environment. The corresponding aggregates of atoms were shown in figure 3.
The solid curves denotes the function K(z) averaged over all the atoms of the system.
Its overall behaviour is typical for amorphous silicon [40, 41]. The amplitude of the
oscillations of the partial K(r) for the atoms with a high degree of tetrahedricity is
larger than on average. In contrast, the group of atoms with a low degree of
tetrahedricity demonstrates a lower amplitude.

The same method has been used to calculate the partial velocity autocorrelation
functions for the 20 % of atoms distinguished by the largest and smallest volumes of
the Voronoi polyhedra. However, these appeared to be almost identical, which is
interesting because with this colouring of the Delaunay network more strongly
correlated clusters than in the case of the measure T have been observed (compare
figures 3 and 5). This means that the symmetry of the nearest surrounding is more
important for the dynamic behaviour of atoms than minor variations of local density.

The velocity autocorrelation function is related to the spectral density of
vibrational states via the Fourier transformation [42]

Z(w) = %Jm cos (wr) K(7)dr. @®

The spectral density of the vibrational states of amorphous silicon obtained by
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Figure 5. Clusters of atoms with (a) smallest and (b) largest volumes of Voronoi polyhedra.
20% of all atoms are shown in each.

transformation of the mean function K(z) is depicted in figure 7 by a solid curve. The
locations of the peaks at 20 meV and 63 meV coincide with the positions of the
transverse acoustic (TA) branch and transverse optical (TO) branch of the spectrum of
polycrystalline silicon. Two weak intermediate peaks at 38 meV and 47 meV
correspond approximately to the maxima of the longitudinal acoustic (LA) branch and
longitudinal optical (LO) branch of the spectrum [41). The period of the dominant
high frequency oscillations observed in the autocorrelation functions (figure 6) fairly
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Figure 6. Velocity autocorrelation functions. The solid curve relates to the total system; the
long-dashed curve to atoms with more regular (figure 3 (a)) and the short-dashed curve to
atoms with more disordered (figure 3(b)) structural surroundings.

0.04

0.03

0.01

80 100

Figure 7. Fourier transforms of the velocity autocorrelation functions shown in figure 6.

coincides with the reverse frequency of TO vibrations. The dashed curves in the same
figure depict the partial densities of states obtained by the Fourier transformation of
the corresponding partial velocity autocorrelation functions. The main difference is
observed in the region of the TO peak, where the density of vibrations for atoms with
a perfect tetrahedral environment is almost twice the size of that for atoms with a non-
tetrahedral one. In the crystalline solid state this vibrational branch corresponds to an
anti-phase displacement of neighbouring atoms. Therefore the TO branch is more
sensitive to the local structure than the TA branch, for which neighbours are moving
with the same phase. In addition, a slight frequency shift of the TO peak is observed
which is in accord with this interpretation: for large values of the measure T the peak
is shifted to lower frequencies, because Si—Si-bonds are weakened by more distorted
surroundings due to the influence of the three-body interaction term. We can see some
excess density of vibrational states at low frequencies. However, compared with

[ 1Y
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amorphous argon [21] this excess is rather weak. In conclusion, one can say that
amorphous silicon does not exhibit a medium-range ‘imperfect’ structure and,
consequently, we do not observe excess low frequency vibrations in this model.

6. Discussion

The spatial distribution of atoms with different local structural environments are
studied by a molecular dynamics model of amorphous silicon. The distribution of
atoms with the most regular and with the most irregular tetrahedral surroundings
differ slightly from a random distribution. However, there are no well separated
regions of ‘perfect’ or ‘imperfect’ structure in amorphous silicon, as has been
discussed recently for quenched argon. Analysis of the atomic dynamics reinforces this
result. The partial spectra of the density of vibrational states of the atoms belonging
to the different groups demonstrate a difference only for high frequency vibrations,
which are sensitive to any local tetrahedral order of the atoms. An appreciable excess
density of vibration states at low frequencies (like the ‘boson’ peak), which would
result from medium-range structural inhomogeneities according to the present
concepts, is not manifested.
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