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Abstract. The idea that the Voronoi network of a granular system lies "in the
depth” of the empty space is used intuitively in different fields of science to study
the transport of fluids, diffusion and other percolation and path problems. We dis-
cuss the concept of a “navigation map” for the interparticle empty space. It helps
to study the spatial distribution and hierarchy of pores in noncrystalline packings
generated in computer simulations. The approach is applied for a porosimetry anal-
ysis of packings of monodisperse spheres of different density. A generalization of the
technique to systems of polydisperse spheres and nonspherical particles is also taken
up.

1 Introduction.

The structure and distribution of pores is a factor, which governs many im-
portant physical phenomena in physical chemistry, catalysis and materials
science. It determines the permeability of porous media, stability of powder
materials, diffusion and thermodynamic properties of simple and complex
liquids and glasses.

A promising way to study the structure of pores is the application of com-
puter simulations. A model obtained by molecular dynamics or Monte Carlo
methods comprises the coordinates of all atoms (particles). However the voids
are not simply related to these coordinates. It needs additional efforts and
algorithms to extract “physical” informations about the unoccupied volume
and to make a quantitative analysis. This question had been understood and
was raised long ago [1]. However, advances have been obtained in the last
decade only. A reason for this is the use of a rigorous mathematical basis,
which gives a geometrical technique to partition the space between the atoms
[2,3]. This Voronoi-Delaunay approach is well-known in the study of atomic
arrangements in liquids and amorphous structures [4]. Next, it had been ap-
plied to study interatomic voids [5,6]. The permeability and flow through
packings of monodisperse spheres was simulated in [7,8]; paths for the diffu-
sion of particles with different size in liquid and glassy polymers was studied
in [9]; the thermodynamic aspects of voids in simple liquids was discussed in
[10,11]; a porosimetry analysis for sphere packings was made in [12].

The main idea for a quantitative analysis of the voids inside an arbitrary
ensemble of atoms (particles) is based on the analysis of “the navigation
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map” of this ens( ble. This map keeps track of the location of the “deepest”
points (most distant from the surfaces of the particles) inside an ensemble
and defines channels (fairways) connecting these points (13]. There are no
principal problems to get this map because its mathematical construction is
well-known. It is the Voronoi network [2,3] which exists for any system [14].
A practical question, however, is to have an efficient algorithm to calculate it
for a given system. Of course, before the calculation of the Voronoi network,
one has to construct the system to be studied. The next stage is then the
analysis: the computation of the Voronoi network, of the holes of a given
size, their spatial distribution, channels acceptable to a given probe, perco-
lation characteristics of the porous space. This needs also mathematical and
programming work.

Note, the conception of the navigation map is close to the idea of “the
medial axes”, which is used to describe the structure of a cavity inside a
continuous medium, or, in the opposite, the structure of an individual domain
with a given shape [15,16]. As it was remarked in [16], the medial axis is a
“continuous version” of the Voronoi network.

2 Geometrical analysis

. The Voronoi-Delaunay approach is originally known for systems of discrete
points. The mosaic of the Voronoi polyhedra (the Voronoi tessellation) cov-
ers the entire space without overlaps and gaps. The set of all edges and
vertices of the Voronoi polyhedra defines the Voronoi network. Therefore it is
a simply-connected and four-bonded network for any nondegenerate ensemble
of points. The bonds of this network are segments of straight lines.

However for physical-chemical applications we deal with systems of finite
size particles, the most simple one being a system of equal spheres. Fortu-
nately, the properties of the Voronoi network for point systems are also true
for this case.

The idea to use the Voronoi-Delaunay approach for a broader class of
particles is very tempting. However, as it was remarked many times, the
classical Voronoi-Delaunay construction cannot be used in general, see for
example [17]. The original Voronoi-Delaunay tessellation does not take into
account the size and the shape of particles.

The problem had been solved for systems of spheres of different radii
(13,11,14]. Such systems are used as models of polydisperse powders, poly-
atomic materials and alloys. To take into account the surface of the particles,
one should introduce a new geometrical construction: instead of the classical
Voronoi polyhedron defined by the centers of spheres, one should define an-
other volume, all points of which are closer to the surface of a given sphere
than to the surfaces of the other spheres of the systems. This region was called
a Voronoi S-region [13]. It is analogous to the usual Voronoi polyhedron, but
its faces and edges are curved. The Voronoi S-regions generate a Voronoi
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S-tessellation. The set of vertices and edges defines the Voro( . S-network
of the system of polydisperse spheres. A special algorithm was created to
calculate the S-constructions. An application of this technique to study 3D
Apollonian packings was made in [18].

Studying the porous space, we are working with the Voronoi S-construction
only. Here we will omit the letter S in the names, for simplicity.

In fact, the Voronoi-Delaunay ideas can be extended to systems of parti-
cles with arbitrary convex shapes. It opens a way to use a rigorous geometrical
technique to study the structure of pores for a much broader class of particles
then systems of spheres. Recently, the corresponding algorithm was developed
and a system of straight lines and spherocylinders was analyzed [19]. Convex
particles possess an important property: the closest distance from any point
of space to the surface of a convex particle is single-valued. This condition
is sufficient to be sure that the Voronoi tessellation exists for any system of
convex particles.

In the general case the Voronoi network is the set of edges (bonds) and
vertices (sites) of the Voronoi regions in the Voronoi tessellation of a given
system of particles. The fact that the Voronoi network lies “in the depth” of
the unoccupied space is valid in general. It follows directly from the definition
of the Voronoi region. If we leave a bond of the Voronoi network (which is a
common edge of the adjacent Voronoi regions), we will be inside of a Voronoi
region and therefore closer to the surface of one of the particles. In this
respect a bond is a fairway: if a probe leaves this line it can “run aground”
on a surface of a particle. The Voronoi network is four-valenced: every site
of the Voronoi network is the origin of four bonds. (It is assumed that the
system is nondegenerate). This is easy to understand: any site of the Voronoi
network is defined by four particles, but four particles open four and only
four channels (bonds) from this site. This is true for any particle which has
one and only one point of contact with a sphere [19].

There are also differences between the general and classical Voronoi net-
work. A major one being the problem of simple connectedness of the network
in 3D. Indeed, even for a system of polydisperse spheres an example can
be constructed for a totally disconnected Voronoi network. Fortunately, we
can ignore this theoretical possibility of the disconnectedness of the Voronoi
network for relevant physical systems [14,19].

3 Algorithms for the navigation map

. To describe the Voronoi network, we should have the following sets of data:
the list {D} of the coordinates of the Voronoi sites and the table { DD} for
the connectivity of the sites. For thr metric analysis of the voids we should
additionally keep the value of the radius of the inscribed sphere at every
site (list {R;}) and the minimum radius of the Delaunay spheres along every
bond, the so called bottleneck radii (list {R}). These data give us the full
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information to 11 . the Voronoi network as a navigation map: the location of
all “deepest” points, their connectivity, and the corresponding values of the
bottleneck radii.

To create the Voronoi network of a monodisperse system one can use any
algorithm for a classical Voronoi polyhedra calculation. The main task of
these algorithms is usually the calculation of the circumsphere for a given
set of four centers (a site of the Voronoi network) by solving the system of
equations

(Ii_I)2+(yi_y)2+(ziﬁz)2=R2s i:1$23314- (1)

T4, Yi, zi are the coordinates of the centre of the i-th particle of a given quartet.
The four unknown variables z,y, z and R are the coordinates and the radius
of the circumsphere. The main step of the algorithm is the determination
of the vertex which is adjacent to a given one (to find the second endpoint
on the Voronoi bond). This can easily be done, because the second site on
a bond is the center of the inscribed sphere, which is closest to the known
vertex on the given Voronoi channel, see e.g. [20].

To create an algorithm for the Voronoi network of polydisperse spheres
one can use the same ideas, however to find a site of the Voronoi network we
should be able to obtain an inscribed sphere between four spherical particles
of arbitrary radii. The solution of the following system of equations gives an
answer to the question:

(-2 + (-9 + (2 -2 = (R +R?, i=123,4  (2)

Where R; is the radius of the i-th particle. Fortunately, this system can be
solved and analytical formulas for z;,¥;,2; and R can be obtained. As a
result, the algorithm for a polydisperse system has the same efficiency as for
monodisperse one. For details see [14].

In the general case of convex particles we cannot calculate Voronoi sites
analytically. However we can use the same idea to find the next site of the
Voronoi network: the adjacent site is the closest one to the known site on a
given Voronoi bond. In this case we have to go step by step along the Voronoi
bond from a known site to define a new site numerically. A general algorithm
for the Voronoi network of such systems is proposed in [19]. It can be used
for particles of any shape. The peculiarities of the particles are hidden in
the distance function d;(r), which defines the minimal distance from a given
point r to the surface of the i-th particle.

4 Permeability and diffusion.

The navigation map is a rigorous geometric construction and represents a real
channel system in a sample. Physical assumptions will be made at the step
of application to a given physical problem. For example one should define
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Fig. 1. Fraction of pore volume accessible to a probe of radius Rprobe (“intrusion”
curve) for packings of monodisperse spheres at different values of porosity ¢ (given
in the insert). Diameter of spheres D is unity.

a ‘“resistance” for fluids moving through a bottleneck, as it was made in
[7,8] to study the permeability in a granular porous media. The results were
successfully compared with experimental data measured on sand packs, bead
packs, and a simple sandstone.

The problem of diffusion of hard particles in a porous media, can be sim-
ulated as a random walk on the navigation map. The probability to go along
a given edge can be assumed to be proportional to the value of the Voronoi
bond bottleneck for a given direction. Knowing the location of all vertices,
their connectivity, and probabilities to go from one vertex to another, a Monte
Carlo process for particle transport can easily be realized. In particular, for-
bidding the possibility to go up, we can simulate a rolling process of a ball
inside a packing of spheres [21].

As an application of the Voronoi network analysis, we present the results
of a study to characterize the hierarchy of pores in monodisperse packings
of spherical particles at different densities. Recently such an analysis was
proposed for the interpretation of mercury porosimetry experiments [12]. We
have created a set of noncrystalline packings of 8000 Lennard Jones particles
relaxed at zero temperature. The porosity of the different packings is in an in-
terval from € = 0.30 to € = 0.70. The denser models represent the well-known
Bernal-like noncrystalline packings of spheres. As the density decreases, we
get more and more cavities inside the packing. The low density packings con-
tain a percolative cluster of relatively large pores and, at the same time, a
percolative cluster of closed packed particles.
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Fig. 2. Voronoi network of a system of nonspherical particles. a.) Representation
of a molecular dynamic model of the isotropic phase of a liquid crystal by 50
spherocylinders. b.) The Voronoi network of this model ( 401 sites and 802 bonds).
Periodic boundary conditions are used.

The “intrusion” curves for a set of our structural models are shown in
Fig.1. They show the volume fraction of pores, where a probe of a given
radius Rprope (radius of meniscus) can be placed, as a function of the value
of Rprobe. With decreasing probe size, the fraction of the volume increases to
the total empty volume inside the model and becomes equal to unity with
Rprobe = 0. The curves characterize the nature of pores at different densities
of packing.

In the terminology of percolation theory the study of pores is a bond
percolation problem on the navigation map. Indeed, all bonds with a value
of the bottleneck radius greater than the radius of a given probe, can be
distinguished (coloured) on the network. Any cluster of coloured bonds de-
fines a pore for a given probe: the probe can be moved inside the pore along
the coloured bonds. Depending on the size of the probe particle, this can
be a finite pore or a percolative one. It is not difficult to define all clusters
of coloured bonds on the network and then to make their analysis, e.g., to
calculate the volume of every pore.

The Voronoi network of a system of nonspherical particles is illustrated
in Fig.2. As an example of a physical sample we use a simplified model of
a liquid crystal. At first an atomically resolved molecular dynamic model
of 50 molecules of 4-(trans- 4’ -pentyl-cyclohexyl)-benzonitrile (PCHS5) in
the isotropic phase at T = 330 K had been created [22]. Then we have
represented every molecule of the liquid crystal by a spherocylinder (cylinder
with hemispheres at the ends). The model box of this system is shown on
Fig. 2a. The length of every spherocylinder is L = 1.3 nm and the radius
r = 0.2 nm. The Voronoi network of this model is demonstrated in Fig.2b.
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Actually, this Voronoi network with the bottleneck radii car{ used for a
pore analysis similar to that of the packings of spheres.

5 Conclusions.

We discussed a method to study the structure of the pore space in granular
and atomic systems. It is based on the analysis of the Voronoi network. This
network lies in the depth of the unoccupied space between particles and
plays the pole of a “navigation map” of the system. It gives quantitative
informations about the spatial distribution of pores in a model, which help
to study flow and diffusion phenomena. The main idea of an algorithm to
calculate the navigation map in 3D for systems of spheres and nonspherical
particles is discussed. The approach is applied for a porosimetry analysis
of packings of monodisperse spheres of different density. An application of
the method to a system of spherocylinders (as a model of liquid crystals) is
demonstrated.
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